目录
利用直角坐标计算
二重积分可以使用直角坐标进行计算,具体步骤如下:
1. 确定积分区域D,即确定x和y的取值范围。
2. 将积分区域D分成n个小区域,每个小区域的面积为Δσ。
3. 对于每个小区域,计算函数f(x,y)的值,并将其乘以该小区域的面积Δσ。
4. 将所有小区域的计算结果相加,得到二重积分的值。
用数学符号表示为:∬Df(x,y)dxdy = lim(λ→0) ∑f(ξi,ηi)Δσi
其中,λ表示每个小区域的直径的最大值,当λ趋近于0时,小区域的面积Δσi也趋近于0。
二重积分可以使用直角坐标进行计算,也可以使用极坐标进行计算,具体选择哪种方式取决于问题的具体情况。
利用极坐标计算
二重积分也可以使用极坐标进行计算,具体步骤如下:
- 确定积分区域D,即确定r和θ的取值范围。
- 将积分区域D分成n个小区域,每个小区域的面积为Δσ。
- 对于每个小区域,计算函数f(r,θ)的值,并将其乘以该小区域的面积Δσ。
- 将所有小区域的计算结果相加,得到二重积分的值。
用数学符号表示为:∬Df(x,y)dxdy = ∬Df(r,θ)rdrdθ
其中,r表示极径,θ表示极角。
二重积分可以使用直角坐标进行计算,也可以使用极坐标进行计算,具体选择哪种方式取决于问题的具体情况。
利用奇偶性计算
当被积函数f(x,y)在区域D内具有奇偶性时,我们可以利用奇偶性来计算二重积分。
具体来说,如果f(x,y)关于x或y是奇函数,那么f(x,y)在对称区域D内的积分为0,即∬Df(x,y)dxdy=0。
如果f(x,y)关于x或y是偶函数,那么f(x,y)在对称区域D内的积分可以表示为f(x,y)在一半区域D1内的积分的两倍,即∬Df(x,y)dxdy=2∬D1f(x,y)dxdy。
利用奇偶性计算二重积分可以简化计算过程,提高计算效率。
利用变量的轮换对称性计算
当积分区域D和函数f(x,y)都关于x和y具有轮换对称性时,我们可以利用变量的轮换对称性来计算二重积分。
假设D是关于x和y对称的,且f(x,y)是关于x和y的偶函数,即f(x,y)=f(y,x)。
那么,我们可以将D分成两个区域D1和D2,其中D1是D在x轴上方的部分,D2是D在x轴下方的部分。
由于f(x,y)是关于x和y的偶函数,所以f(x,y)在D1和D2上的积分相等。因此,我们可以只计算f(x,y)在D1上的积分,然后将其乘以2即可得到f(x,y)在D上的积分。
具体地,设∬Df(x,y)dxdy=A,∬D1f(x,y)dxdy=B,则有:
$A = ∬Df(x,y)dxdy = ∬D1f(x,y)dxdy + ∬D2f(x,y)dxdy$
由于f(x,y)在D1和D2上的积分相等,所以有:
$A = 2∬D1f(x,y)dxdy = 2B$
因此,我们只需要计算f(x,y)在D1上的积分,然后将其乘以2即可得到f(x,y)在D上的积分。
累次积分交换次序或计算例题
累次积分交换次序或计算例题
1. 累次积分交换次序
设有一个二元函数f(x,y)在矩形区域D=[a,b]×[c,d]上连续,
则有以下等式成立:
∫(从a到b) dx ∫(从c到d) f(x,y)dy = ∫(从c到d) dy ∫(从a到b) f(x,y)dx
即先对y积分再对x积分,与先对x积分再对y积分的结果相同。
2. 计算例题
计算累次积分∫(从0到1) dx ∫(从0到x) (x-y) dy。
解:由累次积分的定义,得
∫(从0到1) dx ∫(从0到x) (x-y) dy = ∫(从0到1) [xy-(1/2)y^2]|(从0到x) dx
= ∫(从0到1) (x^2-(1/2)x^2) dx = ∫(从0到1) (1/2)x^2 dx = (1/6)x^3|(从0到1) = 1/6
所以,累次积分∫(从0到1) dx ∫(从0到x) (x-y) dy的结果为1/6。