1. 随机过程中的实现与随机变量
在一个随机过程中, X ( t ) X(t) X(t) 是一个随机函数,也就是每个时间 t t t 都对应一个随机变量 X ( t ) X(t) X(t)。这个随机变量的值依赖于每次实验或每个“样本路径”的具体情况,称为该随机过程的实现(realization)。
比如,语音信号的例子中,假设你从不同的人那里获取语音信号:
- 每个人的语音信号可以看作一个随机过程的不同实现。
- 在某一特定时刻 t 1 t_1 t1,不同人的语音信号(不同实现)可能在这个时刻会有不同的音量(数值)。
- 这些不同实现(不同人)的音量值构成了在时间 t 1 t_1 t1 时的一个随机变量 X ( t 1 ) X(t_1) X(t1)。【骰子的六个面的取值也是随机变量】
因此, X ( t 1 ) X(t_1) X(t1) 是所有可能实现(样本路径)在时间 t 1 t_1 t1 时的随机变量,它的值取决于每个不同的样本路径。
2. 概率密度函数(PDF)
随机变量 X ( t 1 ) X(t_1) X(t1) 的值有一定的不确定性,因为它依赖于不同的实现(例如,不同人讲话的音量)。为了描述这种不确定性,我们引入了概率密度函数(PDF),它用来描述随机变量在不同值上取值的相对可能性。
对于随机变量 X ( t 1 ) X(t_1) X(t1),它的概率密度函数 p X 1 ( x ) p_{X_1}(x) pX1(x) 描述了 X ( t 1 ) X(t_1) X(t1) 取某个值 x x x 的可能性大小。例如:
- p X 1 ( x 1 ) p_{X_1}(x_1) pX1(x1) 是 X ( t 1 ) X(t_1) X(t1) 在 x 1 x_1 x1 这个特定值的概率密度。
- p X 1 ( x 2 ) p_{X_1}(x_2) pX1(x2) 是 X ( t 1 ) X(t_1) X(t1) 在 x 2 x_2 x2 这个特定值的概率密度。
注意:
- PDF 是密度,而不是直接的概率。因此 p X 1 ( x ) p_{X_1}(x) pX1(x) 表示的是一个单位区间内(无限小区间)取值的可能性。
- 真正的概率是通过对 PDF 进行积分得到的,比如随机变量在某个区间
[
a
,
b
]
[a, b]
[a,b] 之间取值的概率可以表示为:
P ( a ≤ X ( t 1 ) ≤ b ) = ∫ a b p X 1 ( x ) d x P(a \leq X(t_1) \leq b) = \int_a^b p_{X_1}(x) dx P(a≤X(t1)≤b)=∫abpX1(x)dx
3. PDF 的总和为 1 的含义
对于一个随机变量,它的所有可能取值的概率总和必须为 1。这意味着随机变量一定会在它的定义域内取某个值。因此,随机变量
X
(
t
1
)
X(t_1)
X(t1) 的概率密度函数
p
X
1
(
x
)
p_{X_1}(x)
pX1(x) 的积分必须为 1,即:
∫
−
∞
∞
p
X
1
(
x
)
d
x
=
1
\int_{-\infty}^{\infty} p_{X_1}(x) dx = 1
∫−∞∞pX1(x)dx=1
这个积分表示的是随机变量
X
(
t
1
)
X(t_1)
X(t1) 在整个可能取值范围(从
−
∞
-\infty
−∞ 到
+
∞
+\infty
+∞)内的所有值的概率密度之和。虽然
p
X
1
(
x
)
p_{X_1}(x)
pX1(x) 可能在不同的
x
x
x 处有不同的数值,但通过对整个范围积分,所有可能的值的密度总和一定是 1。
举个例子:
假设
X
(
t
1
)
X(t_1)
X(t1) 服从一个正态分布(标准正态分布
N
(
0
,
1
)
N(0, 1)
N(0,1)),其概率密度函数为:
p
X
1
(
x
)
=
1
2
π
e
−
x
2
2
p_{X_1}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}
pX1(x)=2π1e−2x2
如果我们对这个 PDF 在整个范围
(
−
∞
,
∞
)
(-\infty, \infty)
(−∞,∞) 上积分:
∫
−
∞
∞
1
2
π
e
−
x
2
2
d
x
=
1
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1
∫−∞∞2π1e−2x2dx=1
这表明随机变量
X
(
t
1
)
X(t_1)
X(t1) 一定会在
(
−
∞
,
∞
)
(-\infty, \infty)
(−∞,∞) 之间的某个值上取值,虽然每个具体值的概率密度可能不同,但所有值的密度总和是 1。
4. 不同函数在时间 t 1 t_1 t1 时取不同值
是指随机过程的不同实现在时间 t 1 t_1 t1 时的取值。这些值是随机的,因此构成了一个随机变量 X ( t 1 ) X(t_1) X(t1),而这个随机变量的概率密度函数 p X 1 ( x ) p_{X_1}(x) pX1(x) 描述了 X ( t 1 ) X(t_1) X(t1) 取值的分布。
虽然 p X 1 ( x ) p_{X_1}(x) pX1(x) 是 X ( t 1 ) X(t_1) X(t1) 在不同值 x x x 处的概率密度,但这些概率密度并不是直接相加等于 1,而是它们在整个定义域上的积分(也就是所有可能值的概率总和)等于 1。
总结:
- 每个时间点 t 1 t_1 t1 都对应一个随机变量 X ( t 1 ) X(t_1) X(t1),这个随机变量有自己的概率密度函数 p X 1 ( x ) p_{X_1}(x) pX1(x)。
- 概率密度函数 p X 1 ( x ) p_{X_1}(x) pX1(x) 描述的是 X ( t 1 ) X(t_1) X(t1) 在某个值 x x x 处的相对可能性,但概率密度函数的总和并不是直接相加等于 1,而是通过积分得到的。
- 通过对 p X 1 ( x ) p_{X_1}(x) pX1(x) 进行积分,可以得到随机变量在某个区间取值的实际概率。
- 整个范围内的概率密度函数的积分必须等于 1,表示随机变量必定在某个值上取值。