周期信号 + 能量信号与功率信号

本文探讨了周期信号、能量信号及功率信号的概念。周期信号在连续与离散情况下均有固定重复模式,能量信号在有限时间内消耗能量,而功率信号在无限时间内保持稳定功率。深入解析信号的能量与功率定义及其在信息技术领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 周期信号

对于连续信号,若存在 T > 0 T>0 T>0,使
x ( t ) = x ( t + n T ) , n 为 整 数 x(t)=x(t+nT), \quad n 为整数 x(t)=x(t+nT),n
对于离散信号,若存在大于零的整数N,使
x ( n ) = x ( n + k N ) , k 为 整 数 x(n)=x(n+kN), \quad k为整数 x(n)=x(n+kN),k
则称 x ( t ) 、 x ( n ) x(t)、x(n) x(t)x(n)为周期信号,T和N分别为 x ( t ) x(t) x(t) x ( n ) x(n) x(n)的周期。显然,知道了周期信号一个周期内的变化过程,就可以确定整个定义域的信号取值

2. 能量信号与功率信号

如果才能够能量的观点来研究信号,可以把信号 x ( t ) x(t) x(t)看作是加在单位电阻上的电流,则在时间 − T < t < T -T<t<T T<t<T内单位电阻所消耗的信号能量为
∫ − T T ∣ x ( t ) ∣ 2 d t \int_{-T}^T|x(t)|^2dt TTx(t)2dt
其平均功率为
1 2 T ∫ − T T ∣ x ( t ) ∣ 2 d t \frac{1}{2T}\int_{-T}^T|x(t)|^2dt 2T1TTx(t)2dt
信号的能量定义为在区间 ( − ∞ , ∞ ) (-\infty,\infty) (,)信号 x ( t ) x(t) x(t)的能量,即
E = l i m T → ∞ ∫ − T T ∣ x ( t ) ∣ 2 d t E=lim_{T\to \infty}\int_{-T}^T |x(t)|^2dt E=limTTTx(t)2dt
而信号的功率定义为在区间 ( − ∞ , ∞ ) (-\infty,\infty) (,)信号 x ( t ) x(t) x(t)的平均功率,即
P = l i m T → ∞ 1 2 T ∫ − T T ∣ x ( t ) ∣ 2 d t (1) P=lim_{T\to \infty}\frac{1}{2T}\int_{-T}^T|x(t)|^2dt \tag{1} P=limT2T1TTx(t)2dt(1)
若一个信号的能量E有界,则称其为能量有限信号,简称能量信号。根据式(1),能量信号的平均功率为零。仅在有限时间区间不为零的信号是能量信号,如单个矩形脉冲信号等。客观存在的信号大多是持续时间有限的能量信号。

另一种情况,若一个信号的能量E无限,而平均功率P为不等于零的有限值,则称其为功率有限信号,简称功率信号。幅度有限的周期信号、随机信号等属于功率信号。

一个信号可以既不是能量信号,也不是功率信号,但不可能既是能量信号又是功率信号。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值