1. 卷积 (Convolution) 与 互相关 (Cross-correlation)
首先,回顾卷积和互相关的定义。
卷积的定义:
对于两个连续时间信号 x ( t ) x(t) x(t) 和 h ( t ) h(t) h(t),卷积定义为:
( x ∗ h ) ( t ) = ∫ − ∞ ∞ x ( τ ) h ( t − τ ) d τ (x * h)(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau (x∗h)(t)=∫−∞∞x(τ)h(t−τ)dτ
对于离散时间信号 x ( n ) x(n) x(n) 和 h ( n ) h(n) h(n),卷积定义为:
( x ∗ h ) ( n ) = ∑ k = − ∞ ∞ x ( k ) h ( n − k ) (x * h)(n) = \sum_{k=-\infty}^{\infty} x(k) h(n - k) (x∗h)(n)=k=−∞∑∞x(k)h(n−k)
卷积运算可以理解为一个信号通过另一个信号的“滤波”过程,通常用于分析信号与系统的关系。
互相关的定义:
互相关函数 R x y ( t ) R_{xy}(t) Rxy(t) 用于衡量两个信号 x ( t ) x(t) x(t) 和 y ( t ) y(t) y(t) 在不同时间滞后下的相似性。对于连续时间信号,互相关定义为:
R x y ( τ ) = ∫ − ∞ ∞ x ( t ) y ( t + τ ) d t R_{xy}(\tau) = \int_{-\infty}^{\infty} x(t) y(t + \tau) dt Rxy(τ)=∫−∞∞x(t)y(t+τ)dt
对于离散时间信号,互相关定义为:
R x y ( k ) = ∑ n = − ∞ ∞ x ( n ) y ( n + k ) R_{xy}(k) = \sum_{n=-\infty}^{\infty} x(n) y(n + k) Rxy(k)=n=−∞∑∞x(n)y(n+k)
互相关反映的是两个信号在不同时间位移下的相似程度,通常用于信号检测和同步等任务。
2. 卷积与互相关的关系
卷积与互相关在形式上非常相似,差别主要体现在时间反转上:
- 在卷积运算中,信号 h ( t ) h(t) h(t) 需要做时间反转,即 h ( t − τ ) h(t - \tau) h(t−τ)。
- 在互相关运算中,没有时间反转,信号 y ( t ) y(t) y(t) 在时间上只是平移为 y ( t + τ ) y(t + \tau) y(t+τ)。
因此,卷积和互相关的主要区别在于:卷积涉及时间反转,而互相关则没有时间反转。
卷积与互相关的转换:
如果我们将信号 h ( t ) h(t) h(t) 在时间上反转,那么卷积就会变成互相关。这意味着:
( x ∗ h ) ( t ) = R x h ~ ( t ) (x * h)(t) = R_{x \tilde{h}}(t) (x∗h)(t)=Rxh~(t)
这里 h ~ ( t ) = h ( − t ) \tilde{h}(t) = h(-t) h~(t)=h(−t) 是信号 h ( t ) h(t) h(t) 的时间反转。
在离散时间情况下,卷积与互相关的关系可以写成:
( x ∗ h ) ( n ) = R x h ~ ( n ) (x * h)(n) = R_{x \tilde{h}}(n) (x∗h)(n)=Rxh~(n)
3. 自相关 (Autocorrelation) 与 卷积的关系
自相关是互相关的特例,当两个信号相同,即 x ( t ) = y ( t ) x(t) = y(t) x(t)=y(t) 时,互相关就变成了自相关:
R x x ( τ ) = ∫ − ∞ ∞ x ( t ) x ( t + τ ) d t R_{xx}(\tau) = \int_{-\infty}^{\infty} x(t) x(t + \tau) dt Rxx(τ)=∫−∞∞x(t)x(t+τ)dt
对于离散时间信号,自相关为:
R x x ( k ) = ∑ n = − ∞ ∞ x ( n ) x ( n + k ) R_{xx}(k) = \sum_{n=-\infty}^{\infty} x(n) x(n + k) Rxx(k)=n=−∞∑∞x(n)x(n+k)
卷积与自相关的关系: 自相关可以看作是信号自身的卷积运算的一个特例,只不过在自相关中没有时间反转:
R x x ( k ) = ( x ∗ x ) ( k ) R_{xx}(k) = (x * x)(k) Rxx(k)=(x∗x)(k)
但注意,这种等式成立的前提是信号没有时间反转。
在信号处理和系统辨识中,白噪声 (white noise) 是一个非常常见的工具,用于分析和估计系统的特性。白噪声具有一些特殊的统计特性,其中最重要的就是它的自相关函数。为了更好地理解这一点,让我们详细解释白噪声及其自相关函数的特性。
1. 白噪声的定义
白噪声是一种特殊的随机信号,它的特点是每个时刻的信号值是相互独立且服从相同分布的(即独立同分布,i.i.d.),并且其频谱在整个频率范围内是均匀分布的。这意味着白噪声的功率在所有频率上是相同的。
在离散时间情况下,白噪声 w ( n ) w(n) w(n) 通常被定义为:
- 均值为零: E [ w ( n ) ] = 0 E[w(n)] = 0 E[w(n)]=0
- 方差为 σ 2 \sigma^2 σ2: E [ w 2 ( n ) ] = σ 2 E[w^2(n)] = \sigma^2 E[w2(n)]=σ2
- 不同时间点的值相互独立: E [ w ( n ) w ( m ) ] = 0 E[w(n) w(m)] = 0 E[w(n)w(m)]=0 当 n ≠ m n \neq m n=m
2. 白噪声的自相关函数
自相关函数衡量一个信号在不同时间滞后下的相似性。对于白噪声来说,由于它是每个时刻的值相互独立的随机变量,所以只有在滞后为 0 时,信号与其自身具有完全相关性,而在其他滞后时间点,相关性为零。
白噪声的自相关函数 R w w ( l ) R_{ww}(l) Rww(l) 定义为:
R w w ( l ) = E [ w ( n ) w ( n + l ) ] R_{ww}(l) = E[w(n)w(n + l)] Rww(l)=E[w(n)w(n+l)]
根据白噪声的性质,当 l = 0 l = 0 l=0 时,自相关函数为白噪声的方差 σ 2 \sigma^2 σ2,即:
R w w ( 0 ) = E [ w ( n ) w ( n ) ] = E [ w 2 ( n ) ] = σ 2 R_{ww}(0) = E[w(n)w(n)] = E[w^2(n)] = \sigma^2 Rww(0)=E[w(n)w(n)]=E[w2(n)]=σ2
当 l ≠ 0 l \neq 0 l=0 时,由于白噪声在不同时间点 n n n 和 n + l n + l n+l 之间没有相关性(独立性假设),所以自相关函数为 0:
R w w ( l ) = 0 for l ≠ 0 R_{ww}(l) = 0 \quad \text{for} \quad l \neq 0 Rww(l)=0forl=0
因此,白噪声的自相关函数 R w w ( l ) R_{ww}(l) Rww(l) 是一个单位冲激函数 δ ( l ) \delta(l) δ(l) 的缩放形式:
R w w ( l ) = σ 2 δ ( l ) R_{ww}(l) = \sigma^2 \delta(l) Rww(l)=σ2δ(l)
这意味着,白噪声的自相关函数只有在滞后为 0 时是非零的,在所有其他滞后下都为 0,这与单位冲激函数 δ ( l ) \delta(l) δ(l) 的特性类似。
3. 白噪声自相关的物理意义
白噪声的自相关函数反映了它的无记忆性和独立性:
- 在滞后 l = 0 l = 0 l=0 时,信号与其自身完全相关,相关性等于其方差 σ 2 \sigma^2 σ2。
- 在滞后 l ≠ 0 l \neq 0 l=0 时,白噪声在不同时间点上没有相关性,因此自相关函数为 0。
这种特性使得白噪声在系统辨识中非常有用,因为它的自相关函数像一个单位冲激信号 δ ( l ) \delta(l) δ(l),可以简化许多计算。通过将白噪声作为输入信号,系统的响应能够很容易地通过互相关函数来确定。
4. 白噪声自相关在系统辨识中的应用
在 LTI 系统中,如果我们使用白噪声作为输入信号 x ( n ) x(n) x(n),它的自相关函数为 R x x ( l ) = σ 2 δ ( l ) R_{xx}(l) = \sigma^2 \delta(l) Rxx(l)=σ2δ(l)。当我们计算输入 x ( n ) x(n) x(n) 和输出 y ( n ) y(n) y(n) 之间的互相关函数时,根据公式:
r y x ( l ) = h ( l ) ∗ r x x ( l ) r_{yx}(l) = h(l) * r_{xx}(l) ryx(l)=h(l)∗rxx(l)
由于 r x x ( l ) ≈ δ ( l ) r_{xx}(l) \approx \delta(l) rxx(l)≈δ(l),互相关函数简化为:
r y x ( l ) ≈ h ( l ) ∗ δ ( l ) = h ( l ) r_{yx}(l) \approx h(l) * \delta(l) = h(l) ryx(l)≈h(l)∗δ(l)=h(l)
因此,输入白噪声时,通过计算输入和输出的互相关函数,我们可以直接得到系统的冲激响应 h ( l ) h(l) h(l)。这就是为什么白噪声在系统辨识中如此有用的原因——它的自相关函数简化了冲激响应的计算。
5. 总结
-
白噪声的自相关函数:白噪声的自相关函数在滞后为 0 时等于其方差 σ 2 \sigma^2 σ2,而在滞后 l ≠ 0 l \neq 0 l=0 时为 0。它的自相关函数表现为 R w w ( l ) = σ 2 δ ( l ) R_{ww}(l) = \sigma^2 \delta(l) Rww(l)=σ2δ(l),类似于单位冲激信号。
-
白噪声在系统辨识中的作用:通过使用白噪声作为输入信号,可以简化系统辨识过程,因为白噪声的自相关函数类似于冲激信号,使得通过互相关函数来估计系统的冲激响应变得非常简单。
因此,白噪声因其自相关特性经常被用作系统辨识中的输入信号。