量化、量化误差和信噪比

1. 量化(Quantisation)是什么?

量化是将一个连续的信号映射到有限的离散值集合中的过程。因为电子设备无法处理无限精度的信号,必须将这些连续信号值通过量化转换为有限精度的数值,这通常使用二进制表示

例子:

假设一个模拟信号的电压范围是从0到10伏特,而你的系统只能处理0到5的离散值集合。这时,量化的过程就是将这个0到10伏特的连续信号“逼近”到最近的离散值。比如,4.7伏特可能被量化为5伏特,而4.2伏特被量化为4伏特。

2. 采样(Sampling)与量化的区别

  • 采样是将连续的时间信号离散化到离散的时间点上,形成采样值。
  • 量化则是将采样值的幅度从一个连续的数值范围映射到离散的集合。

在采样之后,信号的时间是离散的,但是幅度仍然是连续的,而量化将这个连续的幅度转化为有限个可能值。

3. 量化增量 q q q(Quantisation Increment)

量化的关键参数是量化增量 q q q,它决定了连续信号被映射到离散值集合的精度。量化增量是每两个量化级别之间的间隔。通常情况下,量化增量是根据信号的动态范围来设定的。

例子:

假设信号的幅度范围是从0到10伏特,系统可以用5个量化级别表示该信号。则量化增量 q q q 10 5 = 2 \frac{10}{5} = 2 510=2 伏特。也就是说,信号会被量化为 0V、2V、4V、6V、8V、10V 这6个可能的离散值。

4. 量化误差(Quantisation Error)

由于量化的过程涉及“逼近”或“舍入”,量化后信号会产生误差,这就是量化误差。量化误差的大小取决于量化增量 q q q。在线性量化器中,量化误差的范围为 ± q 2 \pm \frac{q}{2} ±2q

例子:

如果量化增量 q = 2 q = 2 q=2 伏特,当实际信号为4.7伏特时,量化器将其量化为5伏特,产生的量化误差为 5 − 4.7 = 0.3 5 - 4.7 = 0.3 54.7=0.3 伏特。

5. 信号的概率密度函数(PDF)

采样后的连续信号 v ( t ) v(t) v(t) 有其概率密度函数(PDF),表示信号值的分布情况。在量化之后,信号的概率密度函数也会发生变化,变为离散的概率密度函数 p ( v 0 ( t ) ) p(v_0(t)) p(v0(t)),但其基本形式不会有太大的改变。

例子:

假设一个信号的概率密度函数 p ( v ) p(v) p(v) 是均匀分布的,也就是说信号的幅度值在整个动态范围内的各个值出现的概率相同。在量化之后,信号的PDF从连续变为离散,但每个量化值的出现概率仍然近似均匀分布。

6. 信号与量化噪声的信噪比(SNqR)

为了衡量量化引入的失真,我们使用信号与量化噪声的信噪比(SNqR),定义为信号的平均功率与量化噪声的平均功率之比。

公式:
S N q R = v 0 2 e q 2 SNqR = \frac{v_0^2}{e_q^2} SNqR=eq2v02

  • v 0 2 v_0^2 v02 表示量化后的信号的平均功率(可以近似为原始信号的功率)。
  • e q 2 e_q^2 eq2 表示量化误差的平均功率(噪声功率)。

7. SNqR 的推导

通过一些假设,我们可以推导出SNqR的表达式:

  1. 线性量化器:假设量化增量 q q q 是固定的。
  2. 零均值信号:信号的PDF是关于0对称的。
  3. 均匀分布的信号PDF:信号在动态范围内的幅度分布是均匀的。

在这些假设下,可以推导出信号的平均功率和量化噪声的平均功率。

信号平均功率的推导:

量化后的信号的平均功率 v 0 2 v_0^2 v02 为:
v 0 2 = ( M 2 − 1 ) 12 q 2 v_0^2 = \frac{(M^2 - 1)}{12} q^2 v02=12(M21)q2
其中 M M M 是量化级别的个数。

量化噪声的平均功率推导:

量化噪声的平均功率 e q

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值