我们可以通过具体计算来详细展开傅里叶变换和自相关函数的应用,以理解为什么傅里叶变换是直接方法,而自相关是间接方法。我们以下面的例子为基础:
假设我们有一个简单的余弦信号:
x
(
t
)
=
cos
(
2
π
f
0
t
)
x(t) = \cos(2 \pi f_0 t)
x(t)=cos(2πf0t)
其中
f
0
f_0
f0 是信号的频率。
1. 直接方法:傅里叶变换
对于这个信号,直接使用傅里叶变换可以得到其频谱分布。我们计算信号 x ( t ) = cos ( 2 π f 0 t ) x(t) = \cos(2 \pi f_0 t) x(t)=cos(2πf0t) 的傅里叶变换:
傅里叶变换公式
傅里叶变换定义为:
X
(
f
)
=
∫
−
∞
+
∞
x
(
t
)
e
−
j
2
π
f
t
d
t
X(f) = \int_{-\infty}^{+\infty} x(t) e^{-j 2 \pi f t} dt
X(f)=∫−∞+∞x(t)e−j2πftdt
将
x
(
t
)
=
cos
(
2
π
f
0
t
)
x(t) = \cos(2 \pi f_0 t)
x(t)=cos(2πf0t) 代入得到:
X
(
f
)
=
∫
−
∞
+
∞
cos
(
2
π
f
0
t
)
e
−
j
2
π
f
t
d
t
X(f) = \int_{-\infty}^{+\infty} \cos(2 \pi f_0 t) e^{-j 2 \pi f t} dt
X(f)=∫−∞+∞cos(2πf0t)e−j2πftdt
余弦函数展开
我们可以将余弦函数写成指数形式:
cos
(
2
π
f
0
t
)
=
e
j
2
π
f
0
t
+
e
−
j
2
π
f
0
t
2
\cos(2 \pi f_0 t) = \frac{e^{j 2 \pi f_0 t} + e^{-j 2 \pi f_0 t}}{2}
cos(2πf0t)=2ej2πf0t+e−j2πf0t
因此,上式变为:
X
(
f
)
=
∫
−
∞
+
∞
(
e
j
2
π
f
0
t
+
e
−
j
2
π
f
0
t
2
)
e
−
j
2
π
f
t
d
t
X(f) = \int_{-\infty}^{+\infty} \left( \frac{e^{j 2 \pi f_0 t} + e^{-j 2 \pi f_0 t}}{2} \right) e^{-j 2 \pi f t} dt
X(f)=∫−∞+∞(2ej2πf0t+e−j2πf0t)e−j2πftdt
将这一表达式拆开:
X
(
f
)
=
1
2
∫
−
∞
+
∞
e
j
2
π
(
f
0
−
f
)
t
d
t
+
1
2
∫
−
∞
+
∞
e
−
j
2
π
(
f
0
+
f
)
t
d
t
X(f) = \frac{1}{2} \int_{-\infty}^{+\infty} e^{j 2 \pi (f_0 - f) t} dt + \frac{1}{2} \int_{-\infty}^{+\infty} e^{-j 2 \pi (f_0 + f) t} dt
X(f)=21∫−∞+∞ej2π(f0−f)tdt+21∫−∞+∞e−j2π(f0+f)tdt
这两个积分可以通过狄拉克 delta 函数求解:
X ( f ) = 1 2 δ ( f − f 0 ) + 1 2 δ ( f + f 0 ) X(f) = \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0) X(f)=21δ(f−f0)+21δ(f+f0)
结果分析
傅里叶变换的结果表示在频率 f = f 0 f = f_0 f=f0 和 f = − f 0 f = -f_0 f=−f0 处各有一个尖峰。因此,我们可以立即得到信号的频率信息 f 0 f_0 f0,直接看到频谱特性,这就是“直接方法”的原因。
2. 间接方法:自相关函数
现在我们使用自相关函数来间接求出频谱信息。
自相关函数定义
自相关函数
R
x
x
(
τ
)
R_{xx}(\tau)
Rxx(τ) 的定义如下:
R
x
x
(
τ
)
=
∫
−
∞
+
∞
x
(
t
)
x
(
t
+
τ
)
d
t
R_{xx}(\tau) = \int_{-\infty}^{+\infty} x(t) x(t + \tau) dt
Rxx(τ)=∫−∞+∞x(t)x(t+τ)dt
将
x
(
t
)
=
cos
(
2
π
f
0
t
)
x(t) = \cos(2 \pi f_0 t)
x(t)=cos(2πf0t) 代入,得到:
R
x
x
(
τ
)
=
∫
−
∞
+
∞
cos
(
2
π
f
0
t
)
cos
(
2
π
f
0
(
t
+
τ
)
)
d
t
R_{xx}(\tau) = \int_{-\infty}^{+\infty} \cos(2 \pi f_0 t) \cos(2 \pi f_0 (t + \tau)) dt
Rxx(τ)=∫−∞+∞cos(2πf0t)cos(2πf0(t+τ))dt
使用三角恒等式
我们可以利用三角恒等式
cos
A
cos
B
=
1
2
[
cos
(
A
−
B
)
+
cos
(
A
+
B
)
]
\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]
cosAcosB=21[cos(A−B)+cos(A+B)] 展开:
R
x
x
(
τ
)
=
∫
−
∞
+
∞
1
2
(
cos
(
2
π
f
0
τ
)
+
cos
(
4
π
f
0
t
+
2
π
f
0
τ
)
)
d
t
R_{xx}(\tau) = \int_{-\infty}^{+\infty} \frac{1}{2} \left( \cos(2 \pi f_0 \tau) + \cos(4 \pi f_0 t + 2 \pi f_0 \tau) \right) dt
Rxx(τ)=∫−∞+∞21(cos(2πf0τ)+cos(4πf0t+2πf0τ))dt
其中,第二项
cos
(
4
π
f
0
t
+
2
π
f
0
τ
)
\cos(4 \pi f_0 t + 2 \pi f_0 \tau)
cos(4πf0t+2πf0τ) 的积分为零,因为它在
t
t
t 上是周期函数,因此有:
R
x
x
(
τ
)
=
1
2
cos
(
2
π
f
0
τ
)
R_{xx}(\tau) = \frac{1}{2} \cos(2 \pi f_0 \tau)
Rxx(τ)=21cos(2πf0τ)
这表示自相关函数是一个以 f 0 f_0 f0 为频率的余弦函数。
频谱获取:对自相关函数进行傅里叶变换
要得到频谱信息,我们还需对自相关函数进行傅里叶变换。对 R x x ( τ ) = 1 2 cos ( 2 π f 0 τ ) R_{xx}(\tau) = \frac{1}{2} \cos(2 \pi f_0 \tau) Rxx(τ)=21cos(2πf0τ) 进行傅里叶变换:
S x x ( f ) = ∫ − ∞ + ∞ R x x ( τ ) e − j 2 π f τ d τ S_{xx}(f) = \int_{-\infty}^{+\infty} R_{xx}(\tau) e^{-j 2 \pi f \tau} d\tau Sxx(f)=∫−∞+∞Rxx(τ)e−j2πfτdτ
将
R
x
x
(
τ
)
R_{xx}(\tau)
Rxx(τ) 代入:
S
x
x
(
f
)
=
∫
−
∞
+
∞
1
2
cos
(
2
π
f
0
τ
)
e
−
j
2
π
f
τ
d
τ
S_{xx}(f) = \int_{-\infty}^{+\infty} \frac{1}{2} \cos(2 \pi f_0 \tau) e^{-j 2 \pi f \tau} d\tau
Sxx(f)=∫−∞+∞21cos(2πf0τ)e−j2πfτdτ
由于
cos
(
2
π
f
0
τ
)
\cos(2 \pi f_0 \tau)
cos(2πf0τ) 的傅里叶变换会产生两个尖峰,因此我们可以得到频谱分布如下:
S
x
x
(
f
)
=
1
2
δ
(
f
−
f
0
)
+
1
2
δ
(
f
+
f
0
)
S_{xx}(f) = \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0)
Sxx(f)=21δ(f−f0)+21δ(f+f0)
结果分析
我们最终获得了和直接傅里叶变换相同的频谱分布,但过程是间接的。首先计算了自相关函数,然后对其进行傅里叶变换,才得出频谱。因此,自相关方法被称为“间接方法”。
总结
通过这个例子,我们可以看到:
- 直接方法(傅里叶变换)一步将信号转换到频域。
- 间接方法(自相关)通过计算自相关函数,再对其进行傅里叶变换来获得频谱信息。
这种区别说明了为什么傅里叶变换称为直接方法,而自相关称为间接方法。