具体计算来详细展开傅里叶变换和自相关函数的应用

我们可以通过具体计算来详细展开傅里叶变换和自相关函数的应用,以理解为什么傅里叶变换是直接方法,而自相关是间接方法。我们以下面的例子为基础:

假设我们有一个简单的余弦信号:
x ( t ) = cos ⁡ ( 2 π f 0 t ) x(t) = \cos(2 \pi f_0 t) x(t)=cos(2πf0t)
其中 f 0 f_0 f0 是信号的频率。

1. 直接方法:傅里叶变换

对于这个信号,直接使用傅里叶变换可以得到其频谱分布。我们计算信号 x ( t ) = cos ⁡ ( 2 π f 0 t ) x(t) = \cos(2 \pi f_0 t) x(t)=cos(2πf0t) 的傅里叶变换:

傅里叶变换公式

傅里叶变换定义为:
X ( f ) = ∫ − ∞ + ∞ x ( t ) e − j 2 π f t d t X(f) = \int_{-\infty}^{+\infty} x(t) e^{-j 2 \pi f t} dt X(f)=+x(t)ej2πftdt

x ( t ) = cos ⁡ ( 2 π f 0 t ) x(t) = \cos(2 \pi f_0 t) x(t)=cos(2πf0t) 代入得到:
X ( f ) = ∫ − ∞ + ∞ cos ⁡ ( 2 π f 0 t ) e − j 2 π f t d t X(f) = \int_{-\infty}^{+\infty} \cos(2 \pi f_0 t) e^{-j 2 \pi f t} dt X(f)=+cos(2πf0t)ej2πftdt

余弦函数展开

我们可以将余弦函数写成指数形式:
cos ⁡ ( 2 π f 0 t ) = e j 2 π f 0 t + e − j 2 π f 0 t 2 \cos(2 \pi f_0 t) = \frac{e^{j 2 \pi f_0 t} + e^{-j 2 \pi f_0 t}}{2} cos(2πf0t)=2ej2πf0t+ej2πf0t

因此,上式变为:
X ( f ) = ∫ − ∞ + ∞ ( e j 2 π f 0 t + e − j 2 π f 0 t 2 ) e − j 2 π f t d t X(f) = \int_{-\infty}^{+\infty} \left( \frac{e^{j 2 \pi f_0 t} + e^{-j 2 \pi f_0 t}}{2} \right) e^{-j 2 \pi f t} dt X(f)=+(2ej2πf0t+ej2πf0t)ej2πftdt

将这一表达式拆开:
X ( f ) = 1 2 ∫ − ∞ + ∞ e j 2 π ( f 0 − f ) t d t + 1 2 ∫ − ∞ + ∞ e − j 2 π ( f 0 + f ) t d t X(f) = \frac{1}{2} \int_{-\infty}^{+\infty} e^{j 2 \pi (f_0 - f) t} dt + \frac{1}{2} \int_{-\infty}^{+\infty} e^{-j 2 \pi (f_0 + f) t} dt X(f)=21+ej2π(f0f)tdt+21+ej2π(f0+f)tdt

这两个积分可以通过狄拉克 delta 函数求解:

X ( f ) = 1 2 δ ( f − f 0 ) + 1 2 δ ( f + f 0 ) X(f) = \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0) X(f)=21δ(ff0)+21δ(f+f0)

结果分析

傅里叶变换的结果表示在频率 f = f 0 f = f_0 f=f0 f = − f 0 f = -f_0 f=f0 处各有一个尖峰。因此,我们可以立即得到信号的频率信息 f 0 f_0 f0,直接看到频谱特性,这就是“直接方法”的原因。

2. 间接方法:自相关函数

现在我们使用自相关函数来间接求出频谱信息。

自相关函数定义

自相关函数 R x x ( τ ) R_{xx}(\tau) Rxx(τ) 的定义如下:
R x x ( τ ) = ∫ − ∞ + ∞ x ( t ) x ( t + τ ) d t R_{xx}(\tau) = \int_{-\infty}^{+\infty} x(t) x(t + \tau) dt Rxx(τ)=+x(t)x(t+τ)dt

x ( t ) = cos ⁡ ( 2 π f 0 t ) x(t) = \cos(2 \pi f_0 t) x(t)=cos(2πf0t) 代入,得到:
R x x ( τ ) = ∫ − ∞ + ∞ cos ⁡ ( 2 π f 0 t ) cos ⁡ ( 2 π f 0 ( t + τ ) ) d t R_{xx}(\tau) = \int_{-\infty}^{+\infty} \cos(2 \pi f_0 t) \cos(2 \pi f_0 (t + \tau)) dt Rxx(τ)=+cos(2πf0t)cos(2πf0(t+τ))dt

使用三角恒等式

我们可以利用三角恒等式 cos ⁡ A cos ⁡ B = 1 2 [ cos ⁡ ( A − B ) + cos ⁡ ( A + B ) ] \cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)] cosAcosB=21[cos(AB)+cos(A+B)] 展开:
R x x ( τ ) = ∫ − ∞ + ∞ 1 2 ( cos ⁡ ( 2 π f 0 τ ) + cos ⁡ ( 4 π f 0 t + 2 π f 0 τ ) ) d t R_{xx}(\tau) = \int_{-\infty}^{+\infty} \frac{1}{2} \left( \cos(2 \pi f_0 \tau) + \cos(4 \pi f_0 t + 2 \pi f_0 \tau) \right) dt Rxx(τ)=+21(cos(2πf0τ)+cos(4πf0t+2πf0τ))dt

其中,第二项 cos ⁡ ( 4 π f 0 t + 2 π f 0 τ ) \cos(4 \pi f_0 t + 2 \pi f_0 \tau) cos(4πf0t+2πf0τ) 的积分为零,因为它在 t t t 上是周期函数,因此有:
R x x ( τ ) = 1 2 cos ⁡ ( 2 π f 0 τ ) R_{xx}(\tau) = \frac{1}{2} \cos(2 \pi f_0 \tau) Rxx(τ)=21cos(2πf0τ)

这表示自相关函数是一个以 f 0 f_0 f0 为频率的余弦函数。

频谱获取:对自相关函数进行傅里叶变换

要得到频谱信息,我们还需对自相关函数进行傅里叶变换。对 R x x ( τ ) = 1 2 cos ⁡ ( 2 π f 0 τ ) R_{xx}(\tau) = \frac{1}{2} \cos(2 \pi f_0 \tau) Rxx(τ)=21cos(2πf0τ) 进行傅里叶变换:

S x x ( f ) = ∫ − ∞ + ∞ R x x ( τ ) e − j 2 π f τ d τ S_{xx}(f) = \int_{-\infty}^{+\infty} R_{xx}(\tau) e^{-j 2 \pi f \tau} d\tau Sxx(f)=+Rxx(τ)ej2πfτdτ

R x x ( τ ) R_{xx}(\tau) Rxx(τ) 代入:
S x x ( f ) = ∫ − ∞ + ∞ 1 2 cos ⁡ ( 2 π f 0 τ ) e − j 2 π f τ d τ S_{xx}(f) = \int_{-\infty}^{+\infty} \frac{1}{2} \cos(2 \pi f_0 \tau) e^{-j 2 \pi f \tau} d\tau Sxx(f)=+21cos(2πf0τ)ej2πfτdτ

由于 cos ⁡ ( 2 π f 0 τ ) \cos(2 \pi f_0 \tau) cos(2πf0τ) 的傅里叶变换会产生两个尖峰,因此我们可以得到频谱分布如下:
S x x ( f ) = 1 2 δ ( f − f 0 ) + 1 2 δ ( f + f 0 ) S_{xx}(f) = \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0) Sxx(f)=21δ(ff0)+21δ(f+f0)

结果分析

我们最终获得了和直接傅里叶变换相同的频谱分布,但过程是间接的。首先计算了自相关函数,然后对其进行傅里叶变换,才得出频谱。因此,自相关方法被称为“间接方法”。

总结

通过这个例子,我们可以看到:

  • 直接方法(傅里叶变换)一步将信号转换到频域。
  • 间接方法(自相关)通过计算自相关函数,再对其进行傅里叶变换来获得频谱信息。

这种区别说明了为什么傅里叶变换称为直接方法,而自相关称为间接方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值