功率信号的功率谱密度确实通常通过自相关函数的傅里叶变换来获得,这是最标准的方法。不过,您看到的公式并不矛盾。它提供了一种等效的计算方法,本质上与自相关函数的傅里叶变换是一致的。
1. 自相关函数与功率谱密度的关系
功率信号的功率谱密度 S x x ( f ) S_{xx}(f) Sxx(f) 通常定义为自相关函数 R x x ( τ ) R_{xx}(\tau) Rxx(τ) 的傅里叶变换:
S x x ( f ) = ∫ − ∞ ∞ R x x ( τ ) e − j 2 π f τ d τ S_{xx}(f) = \int_{-\infty}^{\infty} R_{xx}(\tau) e^{-j 2 \pi f \tau} d\tau Sxx(f)=∫−∞∞Rxx(τ)e−j2πfτdτ
这意味着功率谱密度是由信号的自相关性来定义的。对于功率信号来说,这种方法非常有用,因为自相关函数可以捕捉信号在时间上的稳定性或周期性特征。
2. 时域求和的平方方法
S x x ( k N ) = lim M → ∞ 1 2 M + 1 ∣ ∑ n = − M M x ( n ) e − j 2 π k n N ∣ 2 S_{xx} \left( \frac{k}{N} \right) = \lim_{M \to \infty} \frac{1}{2M + 1} \left| \sum_{n=-M}^{M} x(n) e^{-j 2 \pi \frac{k n}{N}} \right|^2 Sxx(Nk)=M→∞lim2M+11 n=−M∑Mx(n)e−j2πNkn 2
实际上提供了一种直接估计功率谱密度的方法。它通过对信号的傅里叶变换(或离散时间傅里叶变换,DTFT)求平方来获得功率谱密度。这种方法的等效性来源于维纳-辛钦定理,该定理指出:
功率谱密度可以通过信号在时域的平均周期傅里叶变换平方来估算。
换句话说,如果我们直接计算信号的傅里叶变换的平方并取时间平均值(也就是公式中的求和极限过程),那么它会趋向于功率谱密度。
3. 两种方法的等价性
在理论上,通过自相关函数的傅里叶变换和通过时域傅里叶变换的平方,最终得到的功率谱密度是等效的。两者的不同之处在于:
- 自相关函数方法:适合解析和理解功率信号的统计特性,特别是在信号是随机的情况下。
- 直接平方的方法:更适合通过数值方法计算功率谱密度,尤其是对确定性功率信号或在信号遍历性的假设下。
总结
- 自相关函数傅里叶变换和时域傅里叶变换平方取平均这两种方法是等效的。
- 对于功率信号,两种方法都可以用来定义功率谱密度。
- 自相关函数的傅里叶变换更为常用,因为它对随机信号的统计特性有明确的物理意义。而对于某些特定情况或在数值计算中,我们也可以用傅里叶变换平方的方式来估算功率谱密度。