1. 信号总能量的三个表达方式
对于信号 x ( n ) = a n , n ≥ 0 , ∣ a ∣ < 1 x(n) = a^n, \, n \geq 0, \, |a| < 1 x(n)=an,n≥0,∣a∣<1,总能量可以通过以下三种方式计算:
-
能量密度谱 S x x ( ω ) = ∣ X ( ω ) ∣ 2 = 1 1 − 2 a cos ( ω ) + a 2 S_{xx}(\omega) = |X(\omega)|^2 = \frac{1}{1 - 2a\cos(\omega) + a^2} Sxx(ω)=∣X(ω)∣2=1−2acos(ω)+a21
- 这是频域中的信号能量密度分布。
- 它表示信号在每个频率 ω \omega ω 上的能量。
-
时域能量 E x = ∑ n = 0 ∞ ∣ a n ∣ 2 = 1 1 − a 2 E_x = \sum_{n=0}^\infty |a^n|^2 = \frac{1}{1-a^2} Ex=∑n=0∞∣an∣2=1−a21
- 这是通过信号在时域上的平方和计算的能量。
- 它直接从信号的定义出发进行计算。
-
频域能量 E x = 1 2 π ∫ − π π S x x ( ω ) d ω = 1 2 π ∫ − π π 1 1 − 2 a cos ( ω ) + a 2 d ω E_x = \frac{1}{2\pi} \int_{-\pi}^\pi S_{xx}(\omega) d\omega = \frac{1}{2\pi} \int_{-\pi}^\pi \frac{1}{1 - 2a\cos(\omega) + a^2} d\omega Ex=2π1∫−ππSxx(ω)dω=2π1∫−ππ1−2acos(ω)+a21dω
- 这是通过频域能量密度谱 S x x ( ω ) S_{xx}(\omega) Sxx(ω) 积分得到的总能量。
- 根据 Parseval 定理,时域和频域的总能量应该是相等的。
2. 每个公式的物理意义和计算方法
(1) 时域能量 E x = ∑ n = 0 ∞ ∣ a n ∣ 2 = 1 1 − a 2 E_x = \sum_{n=0}^\infty |a^n|^2 = \frac{1}{1-a^2} Ex=∑n=0∞∣an∣2=1−a21
- 物理意义:
- 时域能量是信号 x ( n ) x(n) x(n) 每个样本平方值的和,用于表示信号在时间上的能量强度。
- 它计算的是信号在时间上的总贡献。
- 推导:
E x = ∑ n = 0 ∞ ∣ a n ∣ 2 = ∑ n = 0 ∞ a 2 n E_x = \sum_{n=0}^\infty |a^n|^2 = \sum_{n=0}^\infty a^{2n} Ex=n=0∑∞∣an∣2=n=0∑∞a2n- 这是一个 等比数列,公比为
a
2
a^2
a2,因此求和结果为:
E x = 1 1 − a 2 , ∣ a ∣ < 1 E_x = \frac{1}{1-a^2}, \quad |a| < 1 Ex=1−a21,∣a∣<1
- 这是一个 等比数列,公比为
a
2
a^2
a2,因此求和结果为:
- 适用场景:
- 当信号定义在时域且能量有限时,这种方法非常直观且易于计算。
(2) 能量密度谱 S x x ( ω ) = ∣ X ( ω ) ∣ 2 = 1 1 − 2 a cos ( ω ) + a 2 S_{xx}(\omega) = |X(\omega)|^2 = \frac{1}{1-2a\cos(\omega) + a^2} Sxx(ω)=∣X(ω)∣2=1−2acos(ω)+a21
- 物理意义:
- 能量密度谱表示信号在频率域上每个频率分量的能量分布。
- 它描述了信号能量的频率特性,回答“哪些频率成分贡献了最多的能量”这一问题。
- 推导:
- 通过傅里叶变换计算
X
(
ω
)
X(\omega)
X(ω):
X ( ω ) = ∑ n = 0 ∞ a n e − j ω n = 1 1 − a e − j ω , ∣ a ∣ < 1 X(\omega) = \sum_{n=0}^\infty a^n e^{-j\omega n} = \frac{1}{1-a e^{-j\omega}}, \quad |a| < 1 X(ω)=n=0∑∞ane−jωn=1−ae−jω1,∣a∣<1 - 能量密度谱为:
S x x ( ω ) = ∣ X ( ω ) ∣ 2 = ∣ 1 1 − a e − j ω ∣ 2 S_{xx}(\omega) = |X(\omega)|^2 = \left| \frac{1}{1-a e^{-j\omega}} \right|^2 Sxx(ω)=∣X(ω)∣2= 1−ae−jω1 2 - 通过计算模平方得到:
S x x ( ω ) = 1 1 − 2 a cos ( ω ) + a 2 S_{xx}(\omega) = \frac{1}{1 - 2a\cos(\omega) + a^2} Sxx(ω)=1−2acos(ω)+a21
- 通过傅里叶变换计算
X
(
ω
)
X(\omega)
X(ω):
- 适用场景:
- 适用于频率域分析,尤其是需要研究信号的频率特性时。
(3) 频域能量 E x = 1 2 π ∫ − π π S x x ( ω ) d ω E_x = \frac{1}{2\pi} \int_{-\pi}^\pi S_{xx}(\omega) d\omega Ex=2π1∫−ππSxx(ω)dω
- 物理意义:
- 通过对能量密度谱 S x x ( ω ) S_{xx}(\omega) Sxx(ω) 积分,计算信号的总能量。
- 这表明总能量是各个频率分量能量的累积。
- 推导:
- 直接从 Parseval 定理出发:
E x = 1 2 π ∫ − π π S x x ( ω ) d ω E_x = \frac{1}{2\pi} \int_{-\pi}^\pi S_{xx}(\omega) d\omega Ex=2π1∫−ππSxx(ω)dω - 将
S
x
x
(
ω
)
S_{xx}(\omega)
Sxx(ω) 的表达式代入:
E x = 1 2 π ∫ − π π 1 1 − 2 a cos ( ω ) + a 2 d ω E_x = \frac{1}{2\pi} \int_{-\pi}^\pi \frac{1}{1 - 2a\cos(\omega) + a^2} d\omega Ex=2π1∫−ππ1−2acos(ω)+a21dω - 对该积分的计算较复杂,但结果与时域能量相同:
E x = 1 1 − a 2 E_x = \frac{1}{1-a^2} Ex=1−a21
- 直接从 Parseval 定理出发:
- 适用场景:
- 当信号已经在频域表示时,这种方法更加直接。
3. 它们之间的关系
-
Parseval 定理:
- Parseval 定理保证了 时域总能量 与 频域总能量 相等:
∑ n = 0 ∞ ∣ x ( n ) ∣ 2 = 1 2 π ∫ − π π ∣ X ( ω ) ∣ 2 d ω \sum_{n=0}^\infty |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^\pi |X(\omega)|^2 d\omega n=0∑∞∣x(n)∣2=2π1∫−ππ∣X(ω)∣2dω - 这是能量守恒的表现,无论是在时域还是频域,总能量是相同的。
- Parseval 定理保证了 时域总能量 与 频域总能量 相等:
-
频域能量与能量密度谱的联系:
- 频域总能量是能量密度谱的积分:
E x = 1 2 π ∫ − π π S x x ( ω ) d ω E_x = \frac{1}{2\pi} \int_{-\pi}^\pi S_{xx}(\omega) d\omega Ex=2π1∫−ππSxx(ω)dω
- 频域总能量是能量密度谱的积分:
4. 直观理解
- 时域能量:衡量信号在时间上的强度,例如 a n a^n an 每个样本值对总能量的贡献。
- 能量密度谱:分析信号的频率组成,确定哪种频率成分占主要贡献。
- 频域能量:从频域角度总结所有频率成分的贡献,结果与时域计算一致。