信号的能量特性举例:时域能量,频域能量,能量密度谱


1. 信号总能量的三个表达方式

对于信号 x ( n ) = a n ,   n ≥ 0 ,   ∣ a ∣ < 1 x(n) = a^n, \, n \geq 0, \, |a| < 1 x(n)=an,n0,a<1,总能量可以通过以下三种方式计算:

  1. 能量密度谱 S x x ( ω ) = ∣ X ( ω ) ∣ 2 = 1 1 − 2 a cos ⁡ ( ω ) + a 2 S_{xx}(\omega) = |X(\omega)|^2 = \frac{1}{1 - 2a\cos(\omega) + a^2} Sxx(ω)=X(ω)2=12acos(ω)+a21

    • 这是频域中的信号能量密度分布。
    • 它表示信号在每个频率 ω \omega ω 上的能量。
  2. 时域能量 E x = ∑ n = 0 ∞ ∣ a n ∣ 2 = 1 1 − a 2 E_x = \sum_{n=0}^\infty |a^n|^2 = \frac{1}{1-a^2} Ex=n=0an2=1a21

    • 这是通过信号在时域上的平方和计算的能量。
    • 它直接从信号的定义出发进行计算。
  3. 频域能量 E x = 1 2 π ∫ − π π S x x ( ω ) d ω = 1 2 π ∫ − π π 1 1 − 2 a cos ⁡ ( ω ) + a 2 d ω E_x = \frac{1}{2\pi} \int_{-\pi}^\pi S_{xx}(\omega) d\omega = \frac{1}{2\pi} \int_{-\pi}^\pi \frac{1}{1 - 2a\cos(\omega) + a^2} d\omega Ex=2π1ππSxx(ω)dω=2π1ππ12acos(ω)+a21dω

    • 这是通过频域能量密度谱 S x x ( ω ) S_{xx}(\omega) Sxx(ω) 积分得到的总能量。
    • 根据 Parseval 定理,时域和频域的总能量应该是相等的。

2. 每个公式的物理意义和计算方法

(1) 时域能量 E x = ∑ n = 0 ∞ ∣ a n ∣ 2 = 1 1 − a 2 E_x = \sum_{n=0}^\infty |a^n|^2 = \frac{1}{1-a^2} Ex=n=0an2=1a21
  • 物理意义
    • 时域能量是信号 x ( n ) x(n) x(n) 每个样本平方值的和,用于表示信号在时间上的能量强度。
    • 它计算的是信号在时间上的总贡献。
  • 推导
    E x = ∑ n = 0 ∞ ∣ a n ∣ 2 = ∑ n = 0 ∞ a 2 n E_x = \sum_{n=0}^\infty |a^n|^2 = \sum_{n=0}^\infty a^{2n} Ex=n=0an2=n=0a2n
    • 这是一个 等比数列,公比为 a 2 a^2 a2,因此求和结果为:
      E x = 1 1 − a 2 , ∣ a ∣ < 1 E_x = \frac{1}{1-a^2}, \quad |a| < 1 Ex=1a21,a<1
  • 适用场景
    • 当信号定义在时域且能量有限时,这种方法非常直观且易于计算。

(2) 能量密度谱 S x x ( ω ) = ∣ X ( ω ) ∣ 2 = 1 1 − 2 a cos ⁡ ( ω ) + a 2 S_{xx}(\omega) = |X(\omega)|^2 = \frac{1}{1-2a\cos(\omega) + a^2} Sxx(ω)=X(ω)2=12acos(ω)+a21
  • 物理意义
    • 能量密度谱表示信号在频率域上每个频率分量的能量分布。
    • 它描述了信号能量的频率特性,回答“哪些频率成分贡献了最多的能量”这一问题。
  • 推导
    • 通过傅里叶变换计算 X ( ω ) X(\omega) X(ω)
      X ( ω ) = ∑ n = 0 ∞ a n e − j ω n = 1 1 − a e − j ω , ∣ a ∣ < 1 X(\omega) = \sum_{n=0}^\infty a^n e^{-j\omega n} = \frac{1}{1-a e^{-j\omega}}, \quad |a| < 1 X(ω)=n=0anejωn=1ae1,a<1
    • 能量密度谱为:
      S x x ( ω ) = ∣ X ( ω ) ∣ 2 = ∣ 1 1 − a e − j ω ∣ 2 S_{xx}(\omega) = |X(\omega)|^2 = \left| \frac{1}{1-a e^{-j\omega}} \right|^2 Sxx(ω)=X(ω)2= 1ae1 2
    • 通过计算模平方得到:
      S x x ( ω ) = 1 1 − 2 a cos ⁡ ( ω ) + a 2 S_{xx}(\omega) = \frac{1}{1 - 2a\cos(\omega) + a^2} Sxx(ω)=12acos(ω)+a21
  • 适用场景
    • 适用于频率域分析,尤其是需要研究信号的频率特性时。

(3) 频域能量 E x = 1 2 π ∫ − π π S x x ( ω ) d ω E_x = \frac{1}{2\pi} \int_{-\pi}^\pi S_{xx}(\omega) d\omega Ex=2π1ππSxx(ω)dω
  • 物理意义
    • 通过对能量密度谱 S x x ( ω ) S_{xx}(\omega) Sxx(ω) 积分,计算信号的总能量。
    • 这表明总能量是各个频率分量能量的累积。
  • 推导
    • 直接从 Parseval 定理出发:
      E x = 1 2 π ∫ − π π S x x ( ω ) d ω E_x = \frac{1}{2\pi} \int_{-\pi}^\pi S_{xx}(\omega) d\omega Ex=2π1ππSxx(ω)dω
    • S x x ( ω ) S_{xx}(\omega) Sxx(ω) 的表达式代入:
      E x = 1 2 π ∫ − π π 1 1 − 2 a cos ⁡ ( ω ) + a 2 d ω E_x = \frac{1}{2\pi} \int_{-\pi}^\pi \frac{1}{1 - 2a\cos(\omega) + a^2} d\omega Ex=2π1ππ12acos(ω)+a21dω
    • 对该积分的计算较复杂,但结果与时域能量相同:
      E x = 1 1 − a 2 E_x = \frac{1}{1-a^2} Ex=1a21
  • 适用场景
    • 当信号已经在频域表示时,这种方法更加直接。

3. 它们之间的关系

  1. Parseval 定理

    • Parseval 定理保证了 时域总能量频域总能量 相等:
      ∑ n = 0 ∞ ∣ x ( n ) ∣ 2 = 1 2 π ∫ − π π ∣ X ( ω ) ∣ 2 d ω \sum_{n=0}^\infty |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^\pi |X(\omega)|^2 d\omega n=0x(n)2=2π1ππX(ω)2dω
    • 这是能量守恒的表现,无论是在时域还是频域,总能量是相同的。
  2. 频域能量与能量密度谱的联系

    • 频域总能量是能量密度谱的积分:
      E x = 1 2 π ∫ − π π S x x ( ω ) d ω E_x = \frac{1}{2\pi} \int_{-\pi}^\pi S_{xx}(\omega) d\omega Ex=2π1ππSxx(ω)dω

4. 直观理解

  • 时域能量:衡量信号在时间上的强度,例如 a n a^n an 每个样本值对总能量的贡献。
  • 能量密度谱:分析信号的频率组成,确定哪种频率成分占主要贡献。
  • 频域能量:从频域角度总结所有频率成分的贡献,结果与时域计算一致。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值