学习目标
- 多模态大模型(MLLMs)系统知识
学习内容
1. 主流多模态大模型
2. MLLMs 数据工程
3. MLLMs 训练(预训练、后训练、继续训练)
4. MLLMs 微调技术
6. MLLMs 检索增强(MLLMs RAG)
7. MLLMs 推理与加速
8. MLLMs 信息处理技术(表征学习、模态对齐、检索、转换、跨模态融合)
9. MLLMs 评测体系
10. MLLMs 实践项目
学习平台
- 飞桨AI Studio星河社区 - 人工智能学习与实训社区
- 预训练模型 — PaddleEdu documentation
-
多模态大模型 CLIP, BLIP, BLIP2, LLaVA, miniGPT4, InstructBLIP 系列解读 - 知乎
-
AI之MLM:《MM-LLMs: Recent Advances in MultiModal Large Language Models多模态大语言模型的最新进展》翻译与解读-CSDN博客
-
其它(探索中.....)
小结
MLLMs 日更中......