动力学模型的建立

模型假设

  1. 四旋翼为刚体,不考虑变形
  2. 四旋翼质量不变,质量分布不变(严格对称),重力加速度不变
  3. 认为地面坐标系不变,为惯性坐标系
  4. 忽略空气阻力
  5. 无人机只做小角度姿态变化
  6. X型布局,1,3电机逆时针转;2,4电机顺时针转,如图:
    本项目的四旋翼布局及机体坐标轴方向

变量声明

  • 外部输入变量   U = [ U 1 U 2 U 3 U 4 ] \ U = \begin{bmatrix} U1 \\ U2 \\ U3 \\ U4 \end{bmatrix}  U=U1U2U3U4
    U1表示对地坐标系下四个螺旋桨的升力和,即:
    U 1 = ∑ i = 0 4 F i U1 = \sum_{i=0}^4{F_i} U1=i=04Fi
    再进行坐标系转化。
    U2表示对地坐标系下俯仰力矩,即:
    U 2 = − F 1 − F 2 + F 3 + F 4 U2 = -F1-F2+F3+F4 U2=F1F2+F3+F4
    再进行坐标系转化。
    U3表示对地坐标系下滚转力矩,即:
    U 3 = F 1 − F 2 − F 3 + F 4 U3 = F1-F2-F3+F4 U3=F1F2F3+F4
    再进行坐标系转化。
    U4表示对地坐标系下偏航力矩,即:
    U 4 = F 1 − F 2 + F 3 − F 4 U4 = F1-F2+F3-F4 U4=F1F2+F3F4
    再进行坐标系转化。
  • 状态变量   X = [ x y z θ ϕ ψ ] \ X = \begin{bmatrix} x \\ y \\ z \\ \theta \\ \phi \\ \psi \end{bmatrix}  X=xyzθϕψ
  • 输出变量   Y = [ x y z θ ϕ ψ ] \ Y = \begin{bmatrix} x \\ y \\ z \\ \theta \\ \phi \\ \psi \end{bmatrix}  Y=xyzθϕψ

牛顿方程

对力的分析,采用牛顿方程

机体坐标系分析

对于机体坐标系,沿着   z b \ z^b  zb轴,无人机受到四个电机升力的合力U1,   F B = [ 0 0 U 1 ] \ F_B = \begin{bmatrix} 0 \\ 0 \\ U1 \end{bmatrix}  FB=00U1

对地坐标系转换

F E = C B E × F B = [ c o s θ c o s ψ s i n θ s i n ϕ c o s ψ − c o s ϕ s i n ψ s i n θ c o s ϕ c o s ψ + s i n ϕ s i n ψ c o s θ s i n ψ s i n θ s i n ϕ s i n ψ + c o s ϕ c o s ψ s i n θ c o s ϕ s i n ψ − s i n ϕ c o s ψ − s i n θ s i n ϕ c o s θ c o s ϕ c o s θ ] × [ 0 0 U 1 ] = [ U 1 ⋅ ( s i n θ c o s ϕ c o s ψ + s i n ϕ s i n ψ ) U 1 ⋅ ( s i n θ c o s ϕ s i n ψ − s i n ϕ c o s ψ ) U 1 ⋅ c o s ϕ c o s θ ] F_E = C_B^E \times F_B = \begin{bmatrix} cos\theta cos\psi & sin\theta sin\phi cos\psi - cos\phi sin\psi & sin\theta cos\phi cos\psi + sin\phi sin\psi \\ cos\theta sin\psi & sin\theta sin\phi sin\psi + cos\phi cos\psi & sin\theta cos\phi sin\psi - sin\phi cos\psi \\ -sin\theta & sin\phi cos\theta & cos\phi cos\theta \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \\ U1 \end{bmatrix} = \begin{bmatrix} U1 \cdot (sin\theta cos\phi cos\psi + sin\phi sin\psi) \\ U1 \cdot (sin\theta cos\phi sin\psi - sin\phi cos\psi) \\ U1 \cdot cos\phi cos\theta \end{bmatrix} FE=CBE×FB=cosθcosψcosθsinψsinθsinθsinϕcosψcosϕsinψsinθsinϕsinψ+cosϕcosψsinϕcosθsinθcosϕcosψ+sinϕsinψsinθcosϕsinψsinϕcosψcosϕcosθ×00U1=U1(sinθcosϕcosψ+sinϕsinψ)U1(sinθcosϕsinψsinϕcosψ)U1cosϕcosθ
由牛顿方程:   F = d ( m v ) d t \ F = \frac{d(mv)}{dt}  F=dtd(mv),即力等于动量的一阶微分,得:
[ x ¨ y ¨ z ¨ ] = [ U 1 ⋅ ( s i n θ c o s ϕ c o s ψ + s i n ϕ s i n ψ ) m U 1 ⋅ ( s i n θ c o s ϕ s i n ψ − s i n ϕ c o s ψ ) ) m U 1 ⋅ c o s ϕ c o s θ − m g m ] \begin{bmatrix} \ddot x \\ \ddot y \\ \ddot z \end{bmatrix} = \begin{bmatrix} \frac{U1 \cdot (sin\theta cos\phi cos\psi + sin\phi sin\psi)}{m} \\ \frac{U1 \cdot (sin\theta cos\phi sin\psi - sin\phi cos\psi))}{m} \\ \frac{U1 \cdot cos\phi cos\theta-mg}{m} \end{bmatrix} x¨y¨z¨=mU1(sinθcosϕcosψ+sinϕsinψ)mU1(sinθcosϕsinψsinϕcosψ))mU1cosϕcosθmg

欧拉方程

由欧拉方程:   M = d L d t = J ⋅ ω ˙ + ω × J ⋅ ω \ M = \frac{dL}{dt} = J \cdot \dot \omega + \omega \times J \cdot \omega  M=dtdL=Jω˙+ω×Jω得:

M = [ J x x 0 0 0 J y y 0 0 0 J z z ] ⋅ [ ϕ ¨ θ ¨ ψ ¨ ] + [ ϕ ˙ θ ˙ ψ ˙ ] × [ J x x 0 0 0 J y y 0 0 0 J z z ] ⋅ [ ϕ ˙ θ ˙ ψ ˙ ] = M = \begin{bmatrix} J_{xx} & 0 & 0 \\ 0 & J_{yy} & 0 \\ 0 & 0 & J_{zz} \end{bmatrix} \cdot \begin{bmatrix} \ddot \phi \\ \ddot \theta \\ \ddot \psi \end{bmatrix} + \begin{bmatrix} \dot \phi \\ \dot \theta \\ \dot \psi \end{bmatrix} \times \begin{bmatrix} J_{xx} & 0 & 0 \\ 0 & J_{yy} & 0 \\ 0 & 0 & J_{zz} \end{bmatrix} \cdot \begin{bmatrix} \dot \phi \\ \dot \theta \\ \dot \psi \end{bmatrix} = M=Jxx000Jyy000Jzzϕ¨θ¨ψ¨+ϕ˙θ˙ψ˙×Jxx000Jyy000Jzzϕ˙θ˙ψ˙=

线性化

状态空间方程

传递函数

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Debug的魔法小马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值