数学建模:SPSS线性回归分析——逐步回归分析

数学建模萌新学习笔记(实例:基于数据挖掘的财政分析和经济发展策略的模型

针对变量关系研究方法,包括了相关关系研究以及影响关系研究,大致将常用分析方法归纳为:相关分析,线性回归分析,Logistic回归分析,SEM结构方程

preview

1.相关性检验

为何要进行相关性检验

1.目的主要是观察各自变量和Y是否存在非线性关系。比如对于某个x,明显观察到它和y的散点图是一条抛物线。这种情况下需要把平方项加进来。这种情况下,如果事先没有观察,就会导致遗漏变量

2.相关分析还有一个目的,可以查看一下 自变量之间的共线性程度如何,如果自变量间的相关性非常大,可能表示存在共线性。(*自相关,本组建模缺乏考虑的)

多元线性回归—自相关_泥壶映雪的博客-CSDN博客

在做回归分析之前为什么要做相关性检验。明明作了相关性检验之后不管结果如何都要全做回归分析的啊。_百度知道 (baidu.com)

2.相关性系数

皮尔逊相关系数与皮尔曼相关系数

两种相关系数的比较

皮尔逊相关系数:

 

 皮尔曼相关系数:

斯皮尔曼相关系数和皮尔逊相关系数选择:
1.连续数据,正态分布,线性关系,用pearson相关系数是最恰当,当然用spearman相关系数也可以, 就是效率没有pearson相关系数高。
2.上述任一条件不满足,就用spearman相关系数,不能用pearson相关系数。
3.两个定序数据之间也用spearman相关系数,不能用pearson相关系数。

注:(1)定序数据是指仅仅反映观测对象等级、顺序关系的数据,是由定序尺度计量形成的,表现为类别,可以进行排序,属于品质数据。
eg. 优良差用123表示,加减乘除没有意义。定序数据最重要的意义代表了一组数据中的某种逻辑顺序
(2)斯皮尔曼相关系数的适用条件比皮尔逊相关系数要广,只要数据满足单调关系(例如线性函数、指数函数、对数函数等)就能够使用

皮尔逊、斯皮尔曼、肯德尔相关系数介绍及其在特征选择中的应用 - 知乎 (zhihu.com)

相关性模型 之 皮尔逊相关系数与斯皮尔曼相关系数_iMoriarty的博客-CSDN博客_斯皮尔曼相关系数和皮尔森相关系数

实战:

1相关系数的判断

 

 

 根据皮尔逊检测的规定显著性小于0.05说明具有相关性

2.逐步回归分析

 结果:

 两个表主要说明了各模型的拟合情况

 常数显著性过大,应当建立没有常数项的线性回归模型

 

结果如下:

得出模型为:y=0.436x1+0.404x2-0.326x3

对于数据中字母的解读:

平方和(SS)、自由度(df)、均方(MS)、F(F统计量)、显著性(P值)五大指标。

SS表示均值偏差的平方和和数据的总变化量。

F是F的值,F是方差分析得到的统计量,用来检验回归方程是否显著。

DF表示自由度,自由度是在计算某一测量系统时不受限制的变量数

MS代表均方,其值等于对应的SS除以DF。

1.R:0.996,为高度正相关关系。
R方:判定系数 R²,也称为拟合优度或决定系数,即相关系数R的平方,用于表示拟合得到的模型能解释因变量变化的百分比,R² 越接近1,表示回归模型拟合效果越好,如果R² = 0.666,模型效果一般,也可以接受。
调整后R方:用于修正自变量个数的增加而导致模型拟合效果过高的情况,多用于衡量多重性回归分析模型的拟合效果。
标准估算的错误:大小反映了建立的模型预测因变量时的精度,在对比多个回归模型的拟合效果时,通常会比较该指标,调整后的R方越小,说明拟合效果越好。

2.均方误差=SS/df

3.显著性(P值)是在显著性水平α(常用取值0.01或0.05)下F的临界值,一般我们以此来衡量检验结果是否具有显著性;

显著性(P值)>0.05,不具有统计学意义;
0.01< 显著性(P值)<= 0.05,具有显著性统计学意义;
显著性(P值)<= 0.01,具有极其显著的统计学意义。


 

 参考:SPSS经典线性回归分析之二——逐步回归分析 - 简书 (jianshu.com)

回归分析——简单线性回归实例讲解(SPSS)_糖潮丽子的博客-CSDN博客_线性回归分析spss

### 如何在SPSS中执行逐步回归分析 #### 准备工作 为了确保能够顺利进行逐步回归分析,需先准备好所需的数据集并将其导入到 SPSS 中。这可以通过点击菜单栏的“文件”-> “导入数据”,选择 Excel 文件或其他支持的格式来实现[^1]。 #### 执行逐步回归分析的具体步骤 进入 SPSS 主界面后: - **打开线性回归对话框** 转至顶部菜单栏,依次点击 `分析` -> `回归` -> `线性...` - **设置变量** 将因变量拖放到对应的输入框内;接着把自认为可能影响该结果的因素作为独立变量加入右侧列表框里。注意区分哪些因素应该被考虑进来是非常重要的。 - **指定逐步方法** 在同一窗口下方找到名为 "方法(Method)" 的下拉选项卡,默认情况下这里会显示为 Enter(即所有选定预测因子一次性全部引入模型),此时应改为 Stepwise (逐步)[^3]。 - **配置其他参数** 可能还需要调整一些额外设定比如显著水平阈值等,这些都取决于具体研究目的以及领域内的惯例做法。通常来说,当P值小于0.05时会被视为统计学意义上的显著关联。 - **运行分析** 完成上述各项配置之后就可以单击 OK 开始计算过程了。稍作等待片刻即可得到最终报告页面上的输出表格与图表资料供进一步解读之用。 ```spss REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA CHANGE ZPP /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT dependent_variable_name /METHOD=STEPWISE independent_variable_1 independent_variable_2. ``` 此命令行脚本展示了如何通过语法控制台来进行一次典型的逐步回归测试,其中包含了缺失值处理策略、所请求输出的内容范围定义、入选排除标准的确立等方面的信息。 #### 解读结果 逐步回归的结果解释涉及多个方面,包括但不限于模型摘要表(Model Summary Table)中的R平方变化情况、ANOVA检验表里的F比率及其相伴概率p-value, 还有系数估计表(Coefficients Estimate Table)给出的各项指标数值大小及正负方向指示等等[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值