【强化学习】演员评论家Actor-Critic算法(万字长文、附代码)

        📢本篇文章是博主强化学习(RL)领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在👉强化学习专栏:

       【强化学习】- 【单智能体强化学习】(7)---《演员评论家Actor-Critic算法》

演员评论家Actor-Critic算法

目录

Actor-Critic算法理解

1. 角色设定

2. 两者如何协作

3. 学习的核心

4. 为什么叫Actor-Critic?

生活中例子:

Actor-Critic算法的背景与来源

1. 强化学习的起源

2. 策略梯度方法的局限性

3. Actor-Critic的提出

4. 历史发展与应用

Actor-Critic算法流程的推导

1. 强化学习的优化目标

2. 策略梯度定理

3. Critic:值函数估计

4. Actor:策略优化

5. 完整算法流程

[Python] Actor-Critic算法实现

算法伪代码

算法示例代码

Actor-Critic算法实战代码

算法测试代码

[Notice]  关键点总结

总结


Actor-Critic算法理解

        Actor-Critic算法是一种强化学习中的方法,结合了“演员”(Actor)和“评论家”(Critic)两个部分。下面用一个生活中的比喻来说明它的原理:

1. 角色设定

想象你是一名学习爬山的机器人,而你的目标是找到山顶(获得最高的奖励)。在爬山过程中:

  • Actor(行动者):它就像一个“冒险家”,负责决定下一步往哪里走(比如往左一步还是往右一步)。但它并不总是很聪明,可能会选错方向。
  • Critic(评论者):它就像一个“导师”,站在一旁,评价冒险家的表现。它会告诉Actor:“这一步走得好,接近山顶了”或者“走错了,离山顶更远了”。

2. 两者如何协作

Actor-Critic算法的运作过程大致如下:

  • **Actor(冒险家)**观察环境(如坡度、方向),根据它的“策略”(Policy)选择一个动作(比如往左走)。
  • **Critic(导师)**会根据冒险家的动作和环境的反馈(如高度增加或减少),计算一个“价值”(Value),来表示这个动作的好坏。
  • Actor根据Critic的评价,调整自己的策略,使未来能更聪明地选择动作。

3. 学习的核心

  • Actor的目标:学习一个好的策略,尽可能选择能达到山顶的动作。
  • Critic的目标:准确地评估每一步的表现,帮助Actor改进。

通过这种合作方式,Actor不断优化动作策略,而Critic不断提升评价的准确性。

4. 为什么叫Actor-Critic?

这个名字直接反映了两者的分工:

  • Actor负责行动(选择动作)。
  • Critic负责评价(估算价值)。

两者的结合比单独使用Actor或Critic效果更好,因为它们互相弥补了对方的不足。

生活中例子:

        就像你学习开车,你是Actor,根据道路选择要踩油门还是刹车,而你的驾驶教练就是Critic,告诉你哪个动作更安全、更接近目标。


Actor-Critic算法的背景与来源

        Actor-Critic算法是强化学习领域的一种重要方法,它结合了值函数估计策略优化的优点。在理解其背景时,需要从强化学习的演化历史、策略梯度方法的局限性以及如何通过值函数辅助优化策略展开。

1. 强化学习的起源

        强化学习的目标是使智能体通过与环境的交互,学会在不同状态下选择最优动作,从而最大化长期收益。主要研究方法可以分为以下几类:

  1. 值函数方法(如Q学习):估算每个状态或状态-动作对的价值,并依据最大价值选择动作;
  2. 策略方法:直接优化动作选择的概率分布(策略),通过采样环境反馈进行改进;
  3. 策略-值函数结合的方法:例如Actor-Critic,综合两者的优点。

        随着强化学习问题复杂度的增加,仅依赖值函数方法会面临高维状态空间下的维度灾难,而纯策略方法在优化过程中可能收敛速度较慢。因此,结合策略与值函数的Actor-Critic应运而生。

2. 策略梯度方法的局限性

        策略梯度方法通过优化策略函数直接解决强化学习问题,核心思想是通过以下公式更新策略参数\theta\nabla_\theta J(\theta) = \mathbb{E}{\pi\theta} \left[ \nabla_\theta \log \pi_\theta(a|s) \cdot A^\pi(s, a) \right] 其中A^\pi(s, a) 是优势函数,用于衡量动作的相对好坏。

局限性:
  1. 高方差:直接使用环境反馈(奖励)计算梯度会导致策略梯度的方差很高,影响优化效率;
  2. 低效率:由于奖励信号传递较慢,可能需要大量采样才能学到有效的策略。

为了解决这些问题,研究者引入了Critic,用于降低方差并加速策略优化。

3. Actor-Critic的提出

3.1 概念来源

Actor-Critic算法由策略梯度值函数估计结合而成:

  • Actor(行动者):策略网络,决定在每个状态下采取的动作;
  • Critic(评论者):值函数网络,估算当前状态或状态-动作对的价值,用于指导Actor改进。

这一框架的核心思想是利用Critic降低策略梯度的方差,同时保留策略方法的灵活性。

3.2 数学依据

        Critic通过估算值函数 V^\pi(s)Q^\pi(s, a) 来计算时间差分(TD)误差

\delta_t = r_t + \gamma V^\pi(s_{t+1}) - V^\pi(s_t)

  • Critic最小化TD误差的平方,学习状态值函数;
  • Actor利用TD误差调整策略,使得策略向更优的方向发展。

这一机制使Actor-Critic算法既可以高效地采样环境反馈,又能够快速调整策略参数。

4. 历史发展与应用

4.1 最早提出

        Actor-Critic算法最早由Sutton等人提出(1980年代),作为策略梯度方法的变体,用于解决高方差问题。

4.2 演化与扩展
  1. A3C(Asynchronous Advantage Actor-Critic)
    • 提出时间:2016年,由DeepMind引入。
    • 关键点:通过多线程并行化显著提升学习效率。
  2. PPO(Proximal Policy Optimization)
    • 提出时间:2017年,由OpenAI提出。
    • 关键点:限制策略更新的幅度,改进稳定性。

Actor-Critic算法流程的推导

        Actor-Critic算法结合了策略梯度方法(Policy Gradient)和值函数估计,核心是通过Actor(策略函数)选择动作,通过Critic(值函数)评估这些动作,并相互协作改进。以下是基于数学公式推导的算法流程。

1. 强化学习的优化目标

        目标是最大化累积折扣奖励的期望

J(\theta) = \mathbb{E}{\pi\theta} \left[ \sum_{t=0}^\infty \gamma^t r_t \right] ]

其中:V^\pi(s)

  • \pi_\theta(a|s):策略函数,表示在状态  s  下选择动作  a  的概率;
  • r_t:时间  t  的即时奖励;
  • \gamma :折扣因子,控制未来奖励的权重。

2. 策略梯度定理

        为了优化策略函数 \pi_\theta,我们计算目标函数J(\theta) 对参数\theta 的梯度:

\nabla_\theta J(\theta) = \mathbb{E}{\pi\theta} \left[ \nabla_\theta \log \pi_\theta(a|s) \cdot A^\pi(s, a) \right]

  • \nabla_\theta \log \pi_\theta(a|s):策略的对数梯度,指示如何调整策略参数以提升选取当前动作的概率;
  • A^\pi(s, a):优势函数,衡量动作a的相对优势。

优势函数的估计:

A^\pi(s, a) \approx r + \gamma V^\pi(s') - V^\pi(s)

其中:

  • V^\pi(s):状态值函数,表示在状态s 时累积奖励的期望;
  • s':动作 a执行后的下一状态。

3. Critic:值函数估计

                Critic的目标是通过最小化均方误差,学习状态值函数 V^\pi(s)

L(w) = \frac{1}{2} \mathbb{E} \left[ \left( r + \gamma V^\pi(s') - V^\pi(s) \right)^2 \right]

  • 参数w是Critic网络的权重;
  • V^\pi(s)通常由神经网络近似。

Critic的梯度更新公式:

\nabla_w L(w) = \left( r + \gamma V^\pi(s') - V^\pi(s) \right) \nabla_w V^\pi(s)

4. Actor:策略优化

        Actor根据Critic的反馈来优化策略参数\theta。更新公式为:

\theta \leftarrow \theta + \alpha \cdot \nabla_\theta \log \pi_\theta(a|s) \cdot \delta

其中:

  • \delta = r + \gamma V^\pi(s') - V^\pi(s):时间差分(TD)误差,衡量当前状态值预测的偏差;
  • \alpha:学习率。

Actor的更新方向由Critic计算的TD误差指导。

5. 完整算法流程

结合上述部分,Actor-Critic的算法流程如下:

  1. 初始化Actor和Critic网络的参数\theta, w
  2. 重复以下步骤直到收敛:
    • 在状态  s  下,Actor根据\pi_\theta(a|s)采样动作  a ;
    • 执行动作  a ,获得奖励  r 和下一状态  s' ;
    • Critic计算TD误差: \delta = r + \gamma V^\pi(s') - V^\pi(s)
    • Critic更新:w \leftarrow w + \beta \cdot \delta \cdot \nabla_w V^\pi(s)
    • Actor更新:\theta \leftarrow \theta + \alpha \cdot \nabla_\theta \log \pi_\theta(a|s) \cdot \delta


[Python] Actor-Critic算法实现

算法伪代码

        结合上述公式,以下是Actor-Critic的简化伪代码:

# 初始化Actor和Critic的参数
theta = 初始化Actor参数
w = 初始化Critic参数

for episode in range(最大迭代次数):
    初始化环境
    s = 初始状态
    
    while not done:
        # Actor选择动作
        a = 从π_theta(s)中采样动作
        
        # 执行动作并获得奖励和下一状态
        s_next, r, done = 环境.step(a)
        
        # Critic评估当前状态
        V_s = Critic网络预测值(s, w)
        V_s_next = Critic网络预测值(s_next, w)
        
        # 计算TD误差
        delta = r + gamma * V_s_next - V_s
        
        # 更新Critic参数
        w = w + alpha_critic * delta * ∇_w V_s
        
        # 更新Actor参数
        theta = theta + alpha_actor * delta * ∇_theta log π_theta(a | s)
        
        # 更新状态
        s = s_next

算法示例代码

以下是使用PyTorch实现的Actor-Critic算法的示例代码:

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim

# Actor网络
class Actor(nn.Module):
    def __init__(self, state_dim, action_dim):
        super(Actor, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(state_dim, 128),
            nn.ReLU(),
            nn.Linear(128, action_dim),
            nn.Softmax(dim=-1)
        )

    def forward(self, state):
        return self.fc(state)

# Critic网络
class Critic(nn.Module):
    def __init__(self, state_dim):
        super(Critic, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(state_dim, 128),
            nn.ReLU(),
            nn.Linear(128, 1)
        )

    def forward(self, state):
        return self.fc(state)

# Actor-Critic算法
class ActorCritic:
    def __init__(self, state_dim, action_dim, gamma=0.99, lr=1e-3):
        self.actor = Actor(state_dim, action_dim)
        self.critic = Critic(state_dim)
        self.gamma = gamma
        self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=lr)
        self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=lr)

    def select_action(self, state):
        state = torch.tensor(state, dtype=torch.float32)
        probs = self.actor(state)
        action = torch.multinomial(probs, 1).item()
        return action, probs[action]

    def update(self, state, action_prob, reward, next_state, done):
        state = torch.tensor(state, dtype=torch.float32)
        next_state = torch.tensor(next_state, dtype=torch.float32)
        reward = torch.tensor(reward, dtype=torch.float32)
        done = torch.tensor(done, dtype=torch.float32)

        # Critic更新
        value = self.critic(state)
        next_value = self.critic(next_state)
        target = reward + self.gamma * next_value * (1 - done)
        td_error = target - value

        critic_loss = td_error.pow(2)
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        self.critic_optimizer.step()

        # Actor更新
        actor_loss = -torch.log(action_prob) * td_error.detach()
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()

 项目代码我已经放入GitCode里面,可以通过下面链接跳转:🔥

【强化学习】--- 演员评论家Actor-Critic算法 

后续相关单智能体强化学习算法也会不断在【强化学习】项目里更新,如果该项目对你有所帮助,请帮我点一个星星✨✨✨✨✨,鼓励分享,十分感谢!!!

若是下面代码复现困难或者有问题,也欢迎评论区留言

Actor-Critic算法实战代码

下面是基于Python和PyTorch的Actor-Critic算法的项目实代码:

Actor-->Policy网络

"""《Actor-Critic算法》
    时间:2024.12
    作者:不去幼儿园
"""
import torch
from torch import nn
from torch.nn import functional as F
import numpy as np

# ------------------------------------ #
# 策略梯度Actor,动作选择
# ------------------------------------ #

class PolicyNet(nn.Module):
    def __init__(self, n_states, n_hiddens, n_actions):
        super(PolicyNet, self).__init__()
        self.fc1 = nn.Linear(n_states, n_hiddens)
        self.fc2 = nn.Linear(n_hiddens, n_actions)
    # 前向传播
    def forward(self, x):
        x = self.fc1(x)  # [b,n_states]-->[b,n_hiddens]
        x = F.relu(x)  
        x = self.fc2(x)  # [b,n_hiddens]-->[b,n_actions]
        # 每个状态对应的动作的概率
        x = F.softmax(x, dim=1)  # [b,n_actions]-->[b,n_actions]
        return x

Critic-->Value网络

# ------------------------------------ #
# 值函数Critic,动作评估输出 shape=[b,1]
# ------------------------------------ #

class ValueNet(nn.Module):
    def __init__(self, n_states, n_hiddens):
        super(ValueNet, self).__init__()
        self.fc1 = nn.Linear(n_states, n_hiddens)
        self.fc2 = nn.Linear(n_hiddens, 1)
    # 前向传播
    def forward(self, x):
        x = self.fc1(x)  # [b,n_states]-->[b,n_hiddens]
        x = F.relu(x)
        x = self.fc2(x)  # [b,n_hiddens]-->[b,1]
        return x
Actor-Critic算法
# ------------------------------------ #
# Actor-Critic
# ------------------------------------ #

class ActorCritic:
    def __init__(self, n_states, n_hiddens, n_actions,
                 actor_lr, critic_lr, gamma):
        # 属性分配
        self.gamma = gamma

        # 实例化策略网络
        self.actor = PolicyNet(n_states, n_hiddens, n_actions)
        # 实例化价值网络
        self.critic = ValueNet(n_states, n_hiddens)
        # 策略网络的优化器
        self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
        # 价值网络的优化器
        self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)
    
    # 动作选择
    def take_action(self, state):
        # 维度变换numpy[n_states]-->[1,n_sates]-->tensor
        state = torch.tensor(state[np.newaxis, :])
        # 动作价值函数,当前状态下各个动作的概率
        probs = self.actor(state)
        # 创建以probs为标准类型的数据分布
        action_dist = torch.distributions.Categorical(probs)
        # 随机选择一个动作 tensor-->int
        action = action_dist.sample().item()
        return action

    # 模型更新
    def update(self, transition_dict):
        # 训练集
        states = torch.tensor(transition_dict['states'], dtype=torch.float)
        actions = torch.tensor(transition_dict['actions']).view(-1,1)
        rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1,1)
        next_states = torch.tensor(transition_dict['next_states'], dtype=torch.float)
        dones = torch.tensor(transition_dict['dones'], dtype=torch.float).view(-1,1)

        # 预测的当前时刻的state_value
        td_value = self.critic(states)
        # 目标的当前时刻的state_value
        td_target = rewards + self.gamma * self.critic(next_states) * (1-dones)
        # 时序差分的误差计算,目标的state_value与预测的state_value之差
        td_delta = td_target - td_value
        
        # 对每个状态对应的动作价值用log函数
        log_probs = torch.log(self.actor(states).gather(1, actions))
        # 策略梯度损失
        actor_loss = torch.mean(-log_probs * td_delta.detach())
        # 值函数损失,预测值和目标值之间
        critic_loss = torch.mean(F.mse_loss(self.critic(states), td_target.detach()))

        # 优化器梯度清0
        self.actor_optimizer.zero_grad()  # 策略梯度网络的优化器
        self.critic_optimizer.zero_grad()  # 价值网络的优化器
        # 反向传播
        actor_loss.backward()
        critic_loss.backward()
        # 参数更新
        self.actor_optimizer.step()
        self.critic_optimizer.step()

算法测试代码

有一个简单的CartPole环境,以下是训练代码:

import numpy as np
import matplotlib.pyplot as plt
import gym
import torch
from Actor_Critic import ActorCritic

# ----------------------------------------- #
# 参数设置
# ----------------------------------------- #

num_episodes = 100  # 总迭代次数
gamma = 0.9  # 折扣因子
actor_lr = 1e-3  # 策略网络的学习率
critic_lr = 1e-2  # 价值网络的学习率
n_hiddens = 16  # 隐含层神经元个数
env_name = 'CartPole-v1'
return_list = []  # 保存每个回合的return

# ----------------------------------------- #
# 环境加载
# ----------------------------------------- #

env = gym.make(env_name, render_mode="human")
n_states = env.observation_space.shape[0]  # 状态数 4
n_actions = env.action_space.n  # 动作数 2

# ----------------------------------------- #
# 模型构建
# ----------------------------------------- #

agent = ActorCritic(n_states=n_states,  # 状态数
                    n_hiddens=n_hiddens,  # 隐含层数
                    n_actions=n_actions,  # 动作数
                    actor_lr=actor_lr,  # 策略网络学习率
                    critic_lr=critic_lr,  # 价值网络学习率
                    gamma=gamma)  # 折扣因子

# ----------------------------------------- #
# 训练--回合更新
# ----------------------------------------- #

for i in range(num_episodes):
    
    state = env.reset()[0]  # 环境重置
    done = False  # 任务完成的标记
    episode_return = 0  # 累计每回合的reward

    # 构造数据集,保存每个回合的状态数据
    transition_dict = {
        'states': [],
        'actions': [],
        'next_states': [],
        'rewards': [],
        'dones': [],
    }

    while not done:
        action = agent.take_action(state)  # 动作选择
        next_state, reward, done, _, _ = env.step(action)  # 环境更新
        # 保存每个时刻的状态\动作\...
        transition_dict['states'].append(state)
        transition_dict['actions'].append(action)
        transition_dict['next_states'].append(next_state)
        transition_dict['rewards'].append(reward)
        transition_dict['dones'].append(done)
        # 更新状态
        state = next_state
        # 累计回合奖励
        episode_return += reward
    
    # 保存每个回合的return
    return_list.append(episode_return)
    # 模型训练
    agent.update(transition_dict)

    # 打印回合信息
    print(f'iter:{i}, return:{np.mean(return_list[-10:])}')

# -------------------------------------- #
# 绘图
# -------------------------------------- #

plt.plot(return_list)
plt.title('return')
plt.show()

[Notice]  关键点总结

  1. Critic的稳定性:Critic的误差直接影响Actor的梯度更新。
  2. 熵正则化:为了鼓励探索,可以对Actor的损失函数加入熵项。
  3. 多线程优化:使用A3C(Asynchronous Advantage Actor-Critic)可以提升性能。
  4. PPO改进:限制更新范围,解决策略更新过程中的不稳定性。
​# 环境配置
Python                  3.11.5
torch                   2.1.0
torchvision             0.16.0
gym                     0.26.2

总结

        Actor-Critic算法的提出源于策略梯度方法的高方差问题,通过结合值函数(Critic)降低优化方差,提高学习效率。随着强化学习的不断发展,Actor-Critic及其扩展(如A3C、PPO)成为复杂任务中广泛使用的算法。

 更多强化学习文章,请前往:【强化学习(RL)】专栏


        博客都是给自己看的笔记,如有误导深表抱歉。文章若有不当和不正确之处,还望理解与指出。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请联系博主删除。如有错误、疑问和侵权,欢迎评论留言联系作者,或者添加VX:Rainbook_2,联系作者。✨

评论 132
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不去幼儿园

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值