(八)二阶张量与矩阵(一)

1. 二阶张量的矩阵表示

任意二阶张量含有九个分量,正好可以通过三阶方阵进行表示,但二阶张量具有四种不同的分量形式,不同的分量对应于不同的方阵:

τ 1 = [ T i j ] = [ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ]   τ 2 = [ T i ∙ j ] = [ T 1 ∙ 1 T 2 ∙ 1 T 3 ∙ 1 T 1 ∙ 2 T 2 ∙ 2 T 3 ∙ 2 T 1 ∙ 3 T 2 ∙ 3 T 3 ∙ 3 ]   τ 3 = [ T ∙ j i ] = [ T ∙ 1 1 T ∙ 2 1 T ∙ 3 1 T ∙ 1 2 T ∙ 2 2 T ∙ 3 2 T ∙ 1 3 T ∙ 2 3 T ∙ 3 3 ]   τ 4 = [ T i j ] = [ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ] %%%%%%%%%%% \tau_1=[T_{ij}]= \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ \\ T_{21} & T_{22} & T_{23} \\ \\ T_{31} & T_{32} & T_{33} \end{bmatrix} \\\ \\ %%%%%%%%%%%% \tau_2=[T_{i}^{\bullet j}]= \begin{bmatrix} T_{1}^{\bullet 1} & T_{2}^{\bullet 1} & T_{3}^{\bullet 1} \\ \\ T_{1}^{\bullet 2} & T_{2}^{\bullet 2} & T_{3}^{\bullet 2} \\ \\ T_{1}^{\bullet 3} & T_{2}^{\bullet 3} & T_{3}^{\bullet 3} \end{bmatrix} \\\ \\ %%%%%%%%%%%% \tau_3=[T^{i}_{\bullet j}]= \begin{bmatrix} T^{1}_{\bullet 1} & T^{1}_{\bullet 2} & T^{1}_{\bullet 3} \\ \\ T^{2}_{\bullet 1} & T^{2}_{\bullet 2} & T^{2}_{\bullet 3} \\ \\ T^{3}_{\bullet 1} & T^{3}_{\bullet 2} & T^{3}_{\bullet 3} \end{bmatrix} \\\ \\ %%%%%%%%%%%% \tau_4=[T^{ij}]= \begin{bmatrix} T^{11} & T^{12} & T^{13} \\ \\ T^{21} & T^{22} & T^{23} \\ \\ T^{31} & T^{32} & T^{33} \end{bmatrix} τ1=[Tij]= T11T21T31T12T22T32T13T23T33  τ2=[Tij]= T11T12T13T21T22T23T31T32T33  τ3=[Tji]= T11T12T13T21T22T23T31T32T33  τ4=[Tij]= T11T21T31T12T22T32T13T23T33

注:本文采用前(上)指标为行编号,后(下)指标为列编号的对应规则,而在《张量分析》-黄克智中采用前指标为行编号的对应规则,两种规则的区别仅在于 τ 2 \tau_{2} τ2的不同,两种规则得到的 τ 2 \tau_{2} τ2互为矩阵转置的关系。

特别地,度量张量也是二阶张量,其矩阵形式为:
G 1 = [ g i j ] = [ g 11 g 12 g 13   g 21 g 22 g 23   g 31 g 32 g 33 ]   G 2 = G 3 = [ δ j i ] = [ 1 0 0 0 1 0 0 0 1 ] = E   G 4 = [ g i j ] = [ g 11 g 12 g 13   g 21 g 22 g 23   g 31 g 32 g 33 ] = G 1 − 1 \mathscr{G}_{1}= [g_{ij}]= \begin{bmatrix} g_{11} & g_{12} & g_{13} \\\ \\ g_{21} & g_{22} & g_{23} \\\ \\ g_{31} & g_{32} & g_{33} \end{bmatrix}\\\ \\ %%%%%%%%%%%% \mathscr{G}_{2}= \mathscr{G}_{3}= [\delta^i_j]= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} =E\\\ \\ %%%%%%%%%%%% \mathscr{G}_{4}= [g^{ij}]= \begin{bmatrix} g^{11} & g^{12} & g^{13} \\\ \\ g^{21} & g^{22} & g^{23} \\\ \\ g^{31} & g^{32} & g^{33} \end{bmatrix} =\mathscr{G}_{1}^{-1} G1=[gij]= g11 g21 g31g12g22g32g13g23g33  G2=G3=[δji]= 100010001 =E G4=[gij]= g11 g21 g31g12g22g32g13g23g33 =G11注意到,在一般坐标系下,二阶张量对应的四个矩阵是不相等的,它们之间的转换通过指标升降关系的矩阵形式来实现:
[ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ] =   [ T 1 ∙ 1 T 2 ∙ 1 T 3 ∙ 1 T 1 ∙ 2 T 2 ∙ 2 T 3 ∙ 2 T 1 ∙ 3 T 2 ∙ 3 T 3 ∙ 3 ] T [ g 11 g 12 g 13   g 21 g 22 g 23   g 31 g 32 g 33 ] =   [ g 11 g 12 g 13   g 21 g 22 g 23   g 31 g 32 g 33 ] [ T ∙ 1 1 T ∙ 2 1 T ∙ 3 1 T ∙ 1 2 T ∙ 2 2 T ∙ 3 2 T ∙ 1 3 T ∙ 2 3 T ∙ 3 3 ] =   [ g 11 g 12 g 13   g 21 g 22 g 23   g 31 g 32 g 33 ] [ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ] [ g 11 g 12 g 13   g 21 g 22 g 23   g 31 g 32 g 33 ] \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ \\ T_{21} & T_{22} & T_{23} \\ \\ T_{31} & T_{32} & T_{33} \end{bmatrix} =\ \begin{bmatrix} T_{1}^{\bullet 1} & T_{2}^{\bullet 1} & T_{3}^{\bullet 1} \\ \\ T_{1}^{\bullet 2} & T_{2}^{\bullet 2} & T_{3}^{\bullet 2} \\ \\ T_{1}^{\bullet 3} & T_{2}^{\bullet 3} & T_{3}^{\bullet 3} \end{bmatrix}^T \begin{bmatrix} g_{11} & g_{12} & g_{13} \\\ \\ g_{21} & g_{22} & g_{23} \\\ \\ g_{31} & g_{32} & g_{33} \end{bmatrix} =\ \begin{bmatrix} g_{11} & g_{12} & g_{13} \\\ \\ g_{21} & g_{22} & g_{23} \\\ \\ g_{31} & g_{32} & g_{33} \end{bmatrix} \begin{bmatrix} T^{1}_{\bullet 1} & T^{1}_{\bullet 2} & T^{1}_{\bullet 3} \\ \\ T^{2}_{\bullet 1} & T^{2}_{\bullet 2} & T^{2}_{\bullet 3} \\ \\ T^{3}_{\bullet 1} & T^{3}_{\bullet 2} & T^{3}_{\bullet 3} \end{bmatrix} =\ \begin{bmatrix} g_{11} & g_{12} & g_{13} \\\ \\ g_{21} & g_{22} & g_{23} \\\ \\ g_{31} & g_{32} & g_{33} \end{bmatrix} \begin{bmatrix} T^{11} & T^{12} & T^{13} \\ \\ T^{21} & T^{22} & T^{23} \\ \\ T^{31} & T^{32} & T^{33} \end{bmatrix} \begin{bmatrix} g_{11} & g_{12} & g_{13} \\\ \\ g_{21} & g_{22} & g_{23} \\\ \\ g_{31} & g_{32} & g_{33} \end{bmatrix} T11T21T31T12T22T32T13T23T33 =  T11T12T13T21T22T23T31T32T33 T g11 g21 g31g12g22g32g13g23g33 =  g11 g21 g31g12g22g32g13g23g33 T11T12T13T21T22T23T31T32T33 =  g11 g21 g31g12g22g32g13g23g33 T11T21T31T12T22T32T13T23T33 g11 g21 g31g12g22g32g13g23g33 即:
τ 1 = τ 2 T G 1 = G 1 τ 3 = G 1 τ 4 G 1 \tau_{1} =\tau_{2}^T\mathscr{G}_{1} =\mathscr{G}_{1}\tau_{3} =\mathscr{G}_{1}\tau_{4}\mathscr{G}_{1} τ1=τ2TG1=G1τ3=G1τ4G1那么:
G 1 − 1 τ 2 T G 1 = τ 3 ⟹ τ 2 T ∼ τ 3 \mathscr{G}_{1}^{-1}\tau_{2}^T\mathscr{G}_{1}=\tau_3\Longrightarrow \tau_{2}^T\sim\tau_{3} G11τ2TG1=τ3τ2Tτ3在笛卡尔坐标系中,由于 G 1 = E \mathscr{G}_{1}=E G1=E 故在笛卡尔坐标系中有: τ 1 = τ 2 T = τ 3 = τ 4 \tau_{1}=\tau_{2}^T=\tau_{3}=\tau_{4} τ1=τ2T=τ3=τ4通常如不加说明,定义 τ 3 \tau_{3} τ3为张量的矩阵。

2. 二阶张量转置与矩阵转置

二阶转置张量的分量形式为:
( T T ) i j = T j i ⟹ ( τ T ) 1 = [ ( T T ) i j ] = [ ( T T ) 11 ( T T ) 12 ( T T ) 13 ( T T ) 21 ( T T ) 22 ( T T ) 23 ( T T ) 31 ( T T ) 32 ( T T ) 33 ] = [ T 11 T 21 T 31 T 12 T 22 T 32 T 13 T 23 T 33 ] = ( τ 1 ) T   ( T T ) i ∙ j = T ∙ i j ⟹ ( τ T ) 2 = [ ( T T ) i ∙ j ] = [ ( T T ) 1 ∙ 1 ( T T ) 2 ∙ 1 ( T T ) 3 ∙ 1 ( T T ) 1 ∙ 2 ( T T ) 2 ∙ 2 ( T T ) 3 ∙ 2 ( T T ) 1 ∙ 3 ( T T ) 2 ∙ 3 ( T T ) 3 ∙ 3 ] = [ T ∙ 1 1 T ∙ 2 1 T ∙ 3 1 T ∙ 1 2 T ∙ 2 2 T ∙ 3 2 T ∙ 1 3 T ∙ 2 3 T ∙ 3 3 ] = τ 3   ( T T ) ∙ j i = T j ∙ i ⟹ ( τ T ) 3 = [ ( T T ) ∙ j i ] = [ ( T T ) ∙ 1 1 ( T T ) ∙ 2 1 ( T T ) ∙ 3 1 ( T T ) ∙ 1 2 ( T T ) ∙ 2 2 ( T T ) ∙ 3 2 ( T T ) ∙ 2 3 ( T T ) ∙ 2 3 ( T T ) ∙ 3 3 ] = [ T 1 ∙ 1 T 2 ∙ 1 T 3 ∙ 1 T 1 ∙ 2 T 2 ∙ 2 T 3 ∙ 2 T 1 ∙ 3 T 2 ∙ 3 T 3 ∙ 3 ] = τ 2   ( T T ) i j = T j i ⟹ ( τ T ) 4 = [ ( T T ) i j ] = [ ( T T ) 11 ( T T ) 12 ( T T ) 13 ( T T ) 21 ( T T ) 22 ( T T ) 23 ( T T ) 31 ( T T ) 32 ( T T ) 33 ] = [ T 11 T 21 T 31 T 12 T 22 T 32 T 13 T 23 T 33 ] = ( τ 4 ) T (T^{T})_{ij}=T_{ji} \Longrightarrow (\tau^T)_{1}=[(T^{T})_{ij}] =\begin{bmatrix} (T^{T})_{11} & (T^{T})_{12} & (T^{T})_{13} \\ \\ (T^{T})_{21} & (T^{T})_{22} & (T^{T})_{23} \\ \\ (T^{T})_{31} & (T^{T})_{32} & (T^{T})_{33} \end{bmatrix} =\begin{bmatrix} T_{11} & T_{21} & T_{31} \\ \\ T_{12} & T_{22} & T_{32} \\ \\ T_{13} & T_{23} & T_{33} \end{bmatrix} =(\tau_{1})^T\\\ \\ %%%%%%%%%%%% (T^{T})_{i}^{\bullet j}=T^{j}_{\bullet i} \Longrightarrow (\tau^T)_{2}=[(T^{T})_{i}^{\bullet j}] =\begin{bmatrix} (T^{T})_{1}^{\bullet 1} & (T^{T})_{2}^{\bullet 1} & (T^{T})_{3}^{\bullet 1} \\ \\ (T^{T})_{1}^{\bullet 2} & (T^{T})_{2}^{\bullet 2} & (T^{T})_{3}^{\bullet 2} \\ \\ (T^{T})_{1}^{\bullet 3} & (T^{T})_{2}^{\bullet 3} & (T^{T})_{3}^{\bullet 3} \end{bmatrix} =\begin{bmatrix} T^{1}_{\bullet 1} & T^{1}_{\bullet 2} & T^{1}_{\bullet 3} \\ \\ T^{2}_{\bullet 1} & T^{2}_{\bullet 2} & T^{2}_{\bullet 3} \\ \\ T^{3}_{\bullet 1} & T^{3}_{\bullet 2} & T^{3}_{\bullet 3} \end{bmatrix} =\tau_{3}\\\ \\ %%%%%%%%%%%% (T^{T})^{i}_{\bullet j}=T_{j}^{\bullet i} \Longrightarrow (\tau^T)_{3}=[(T^{T})^{i}_{\bullet j}] =\begin{bmatrix} (T^{T})^{1}_{\bullet 1} & (T^{T})^{1}_{\bullet 2} & (T^{T})^{1}_{\bullet 3} \\ \\ (T^{T})^{2}_{\bullet 1} & (T^{T})^{2}_{\bullet 2} & (T^{T})^{2}_{\bullet 3} \\ \\ (T^{T})^{3}_{\bullet 2} & (T^{T})^{3}_{\bullet 2} & (T^{T})^{3}_{\bullet 3} \end{bmatrix} =\begin{bmatrix} T_{1}^{\bullet 1} & T_{2}^{\bullet 1} & T_{3}^{\bullet 1} \\ \\ T_{1}^{\bullet 2} & T_{2}^{\bullet 2} & T_{3}^{\bullet 2} \\ \\ T_{1}^{\bullet 3} & T_{2}^{\bullet 3} & T_{3}^{\bullet 3} \end{bmatrix} =\tau_{2} \\\ \\ %%%%%%%%%%%% (T^{T})^{ij}=T^{ji} \Longrightarrow (\tau^T)_{4}=[(T^{T})^{ij}] =\begin{bmatrix} (T^{T})^{11} & (T^{T})^{12} & (T^{T})^{13} \\ \\ (T^{T})^{21} & (T^{T})^{22} & (T^{T})^{23} \\ \\ (T^{T})^{31} & (T^{T})^{32} & (T^{T})^{33} \end{bmatrix} =\begin{bmatrix} T^{11} & T^{21} & T^{31} \\ \\ T^{12} & T^{22} & T^{32} \\ \\ T^{13} & T^{23} & T^{33} \end{bmatrix} =(\tau_{4})^T (TT)ij=Tji(τT)1=[(TT)ij]= (TT)11(TT)21(TT)31(TT)12(TT)22(TT)32(TT)13(TT)23(TT)33 = T11T12T13T21T22T23T31T32T33 =(τ1)T (TT)ij=Tij(τT)2=[(TT)ij]= (TT)11(TT)12(TT)13(TT)21(TT)22(TT)23(TT)31(TT)32(TT)33 = T11T12T13T21T22T23T31T32T33 =τ3 (TT)ji=Tji(τT)3=[(TT)ji]= (TT)11(TT)12(TT)23(TT)21(TT)22(TT)23(TT)31(TT)32(TT)33 = T11T12T13T21T22T23T31T32T33 =τ2 (TT)ij=Tji(τT)4=[(TT)ij]= (TT)11(TT)21(TT)31(TT)12(TT)22(TT)32(TT)13(TT)23(TT)33 = T11T12T13T21T22T23T31T32T33 =(τ4)T这说明若两个张量互为转置,则它们的 τ 1 、 τ 4 \tau_1、\tau_4 τ1τ4 矩阵也互为转置,而转置张量的 τ 2 \tau_2 τ2 矩阵与原张量的 τ 3 \tau_3 τ3 矩阵相等,转置张量的 τ 3 \tau_3 τ3 矩阵与原张量的 τ 2 \tau_2 τ2 矩阵相等

  • 更特别地,对于对称张量 N \bold{N} N有:
    ( N T ) i j = N i j ⟹ ( N 1 ) T = ( N T ) 1 = [ ( N T ) i j ] = [ ( N T ) 11 ( N T ) 12 ( N T ) 13 ( N T ) 21 ( N T ) 22 ( N T ) 23 ( N T ) 31 ( N T ) 32 ( N T ) 33 ] = [ N 11 N 12 N 13 N 21 N 22 N 23 N 31 N 32 N 33 ] = N 1   ( N T ) i ∙ j = N i ∙ j ⟹ N 3 = ( N T ) 2 = [ ( N T ) i ∙ j ] = [ ( N T ) 1 ∙ 1 ( N T ) 2 ∙ 1 ( N T ) 3 ∙ 1 ( N T ) 1 ∙ 2 ( N T ) 2 ∙ 2 ( N T ) 3 ∙ 2 ( N T ) 1 ∙ 3 ( N T ) 2 ∙ 3 ( N T ) 3 ∙ 3 ] = [ N 1 ∙ 1 N 2 ∙ 1 N 3 ∙ 1 N 1 ∙ 2 N 2 ∙ 2 N 3 ∙ 2 N 1 ∙ 3 N 2 ∙ 3 N 3 ∙ 3 ] = N 2   ( N T ) ∙ j i = N ∙ j i ⟹ N 2 = ( N T ) 3 = [ ( N T ) ∙ j i ] = [ ( N T ) ∙ 1 1 ( N T ) ∙ 2 1 ( N T ) ∙ 3 1 ( N T ) ∙ 1 2 ( N T ) ∙ 2 2 ( N T ) ∙ 3 2 ( N T ) ∙ 2 3 ( N T ) ∙ 2 3 ( N T ) ∙ 3 3 ] = [ N ∙ 1 1 N ∙ 2 1 N ∙ 3 1 N ∙ 1 2 N ∙ 2 2 N ∙ 3 2 N ∙ 2 3 N ∙ 2 3 N ∙ 3 3 ] = N 3   ( N T ) i j = N i j ⟹ ( N 4 ) T = ( N T ) 4 = [ ( N T ) i j ] = [ ( N T ) 11 ( N T ) 12 ( N T ) 13 ( N T ) 21 ( N T ) 22 ( N T ) 23 ( N T ) 31 ( N T ) 32 ( N T ) 33 ] = [ N 11 N 12 N 13 N 21 N 22 N 23 N 31 N 32 N 33 ] = N 4 (N^T)_{ij}=N_{ij} \Longrightarrow (N_{1})^T=(N^T)_{1}=[(N^{T})_{ij}] =\begin{bmatrix} (N^{T})_{11} & (N^{T})_{12} & (N^{T})_{13} \\ \\ (N^{T})_{21} & (N^{T})_{22} & (N^{T})_{23} \\ \\ (N^{T})_{31} & (N^{T})_{32} & (N^{T})_{33} \end{bmatrix} =\begin{bmatrix} N_{11} & N_{12} & N_{13} \\ \\ N_{21} & N_{22} & N_{23} \\ \\ N_{31} & N_{32} & N_{33} \end{bmatrix} =N_1\\\ \\ %%%%%%%%%%%% (N^{T})_{i}^{\bullet j}=N_{i}^{\bullet j} \Longrightarrow N_{3}=(N^T)_{2}=[(N^{T})_{i}^{\bullet j}] =\begin{bmatrix} (N^{T})_{1}^{\bullet 1} & (N^{T})_{2}^{\bullet 1} & (N^{T})_{3}^{\bullet 1} \\ \\ (N^{T})_{1}^{\bullet 2} & (N^{T})_{2}^{\bullet 2} & (N^{T})_{3}^{\bullet 2} \\ \\ (N^{T})_{1}^{\bullet 3} & (N^{T})_{2}^{\bullet 3} & (N^{T})_{3}^{\bullet 3} \end{bmatrix} =\begin{bmatrix} N_{1}^{\bullet 1} & N_{2}^{\bullet 1} & N_{3}^{\bullet 1} \\ \\ N_{1}^{\bullet 2} & N_{2}^{\bullet 2} & N_{3}^{\bullet 2} \\ \\ N_{1}^{\bullet 3} & N_{2}^{\bullet 3} & N_{3}^{\bullet 3} \end{bmatrix} =N_2 \\\ \\ %%%%%%%%%%%% (N^{T})^{i}_{\bullet j}=N^{i}_{\bullet j} \Longrightarrow N_2=(N^T)_{3}=[(N^{T})^{i}_{\bullet j}] =\begin{bmatrix} (N^{T})^{1}_{\bullet 1} & (N^{T})^{1}_{\bullet 2} & (N^{T})^{1}_{\bullet 3} \\ \\ (N^{T})^{2}_{\bullet 1} & (N^{T})^{2}_{\bullet 2} & (N^{T})^{2}_{\bullet 3} \\ \\ (N^{T})^{3}_{\bullet 2} & (N^{T})^{3}_{\bullet 2} & (N^{T})^{3}_{\bullet 3} \end{bmatrix} =\begin{bmatrix} N^{1}_{\bullet 1} & N^{1}_{\bullet 2} & N^{1}_{\bullet 3} \\ \\ N^{2}_{\bullet 1} & N^{2}_{\bullet 2} & N^{2}_{\bullet 3} \\ \\ N^{3}_{\bullet 2} & N^{3}_{\bullet 2} & N^{3}_{\bullet 3} \end{bmatrix} =N_{3} \\\ \\ %%%%%%%%%%%% (N^{T})^{ij}=N^{ij} \Longrightarrow (N_4)^T=(N^T)_{4}=[(N^{T})^{ij}] =\begin{bmatrix} (N^{T})^{11} & (N^{T})^{12} & (N^{T})^{13} \\ \\ (N^{T})^{21} & (N^{T})^{22} & (N^{T})^{23} \\ \\ (N^{T})^{31} & (N^{T})^{32} & (N^{T})^{33} \end{bmatrix} =\begin{bmatrix} N^{11} & N^{12} & N^{13} \\ \\ N^{21} & N^{22} & N^{23} \\ \\ N^{31} & N^{32} & N^{33} \end{bmatrix} =N_{4} (NT)ij=Nij(N1)T=(NT)1=[(NT)ij]= (NT)11(NT)21(NT)31(NT)12(NT)22(NT)32(NT)13(NT)23(NT)33 = N11N21N31N12N22N32N13N23N33 =N1 (NT)ij=NijN3=(NT)2=[(NT)ij]= (NT)11(NT)12(NT)13(NT)21(NT)22(NT)23(NT)31(NT)32(NT)33 = N11N12N13N21N22N23N31N32N33 =N2 (NT)ji=NjiN2=(NT)3=[(NT)ji]= (NT)11(NT)12(NT)23(NT)21(NT)22(NT)23(NT)31(NT)32(NT)33 = N11N12N23N21N22N23N31N32N33 =N3 (NT)ij=Nij(N4)T=(NT)4=[(NT)ij]= (NT)11(NT)21(NT)31(NT)12(NT)22(NT)32(NT)13(NT)23(NT)33 = N11N21N31N12N22N32N13N23N33 =N4可见,对称二阶张量 N \bold{N} N N 1 、 N 4 N_1、N_4 N1N4 矩阵为对称矩阵且 N 2 = N 3 N_2=N_3 N2=N3,但 N 2 、 N 3 N_2、N_3 N2N3 一般并不是对称矩阵
  • 对于反对称张量 Ω \bold{\Omega} Ω有:
    ( Ω T ) i j = − Ω i j ⟹ ( Ω 1 ) T = ( Ω T ) 1 = [ ( Ω T ) i j ] = [ ( Ω T ) 11 ( Ω T ) 12 ( Ω T ) 13 ( Ω T ) 21 ( Ω T ) 22 ( Ω T ) 23 ( Ω T ) 31 ( Ω T ) 32 ( Ω T ) 33 ] = − [ Ω 11 Ω 12 Ω 13 Ω 21 Ω 22 Ω 23 Ω 31 Ω 32 Ω 33 ] = − Ω 1   ( Ω T ) i ∙ j = − Ω i ∙ j ⟹ Ω 3 = ( Ω T ) 2 = [ ( Ω T ) i ∙ j ] = [ ( Ω T ) 1 ∙ 1 ( Ω T ) 2 ∙ 1 ( Ω T ) 3 ∙ 1 ( Ω T ) 1 ∙ 2 ( Ω T ) 2 ∙ 2 ( Ω T ) 3 ∙ 2 ( Ω T ) 1 ∙ 3 ( Ω T ) 2 ∙ 3 ( Ω T ) 3 ∙ 3 ] = − [ Ω 1 ∙ 1 Ω 2 ∙ 1 Ω 3 ∙ 1 Ω 1 ∙ 2 Ω 2 ∙ 2 Ω 3 ∙ 2 Ω 1 ∙ 3 Ω 2 ∙ 3 Ω 3 ∙ 3 ] = − Ω 2   ( Ω T ) ∙ j i = − Ω ∙ j i ⟹ Ω 2 = ( Ω T ) 3 = [ ( Ω T ) ∙ j i ] = [ ( Ω T ) ∙ 1 1 ( Ω T ) ∙ 2 1 ( Ω T ) ∙ 3 1 ( Ω T ) ∙ 1 2 ( Ω T ) ∙ 2 2 ( Ω T ) ∙ 3 2 ( Ω T ) ∙ 2 3 ( Ω T ) ∙ 2 3 ( Ω T ) ∙ 3 3 ] = − [ Ω ∙ 1 1 Ω ∙ 2 1 Ω ∙ 3 1 Ω ∙ 1 2 Ω ∙ 2 2 Ω ∙ 3 2 Ω ∙ 2 3 Ω ∙ 2 3 Ω ∙ 3 3 ] = − Ω 3   ( Ω T ) i j = − Ω i j ⟹ ( Ω 4 ) T = ( Ω T ) 4 = [ ( Ω T ) i j ] = [ ( Ω T ) 11 ( Ω T ) 12 ( Ω T ) 13 ( Ω T ) 21 ( Ω T ) 22 ( Ω T ) 23 ( Ω T ) 31 ( Ω T ) 32 ( Ω T ) 33 ] = − [ Ω 11 Ω 12 Ω 13 Ω 21 Ω 22 Ω 23 Ω 31 Ω 32 Ω 33 ] = − Ω 4 ({\Omega}^T)_{ij}=-{\Omega}_{ij} \Longrightarrow ({\Omega}_{1})^T=({\Omega}^T)_{1}=[({\Omega}^{T})_{ij}] =\begin{bmatrix} ({\Omega}^{T})_{11} & ({\Omega}^{T})_{12} & ({\Omega}^{T})_{13} \\ \\ ({\Omega}^{T})_{21} & ({\Omega}^{T})_{22} & ({\Omega}^{T})_{23} \\ \\ ({\Omega}^{T})_{31} & ({\Omega}^{T})_{32} & ({\Omega}^{T})_{33} \end{bmatrix} =-\begin{bmatrix} {\Omega}_{11} & {\Omega}_{12} & {\Omega}_{13} \\ \\ {\Omega}_{21} & {\Omega}_{22} & {\Omega}_{23} \\ \\ {\Omega}_{31} & {\Omega}_{32} & {\Omega}_{33} \end{bmatrix} =-{\Omega}_1\\\ \\ %%%%%%%%%%%% ({\Omega}^{T})_{i}^{\bullet j}=-{\Omega}_{i}^{\bullet j} \Longrightarrow {\Omega}_{3}=({\Omega}^T)_{2}=[({\Omega}^{T})_{i}^{\bullet j}] =\begin{bmatrix} ({\Omega}^{T})_{1}^{\bullet 1} & ({\Omega}^{T})_{2}^{\bullet 1} & ({\Omega}^{T})_{3}^{\bullet 1} \\ \\ ({\Omega}^{T})_{1}^{\bullet 2} & ({\Omega}^{T})_{2}^{\bullet 2} & ({\Omega}^{T})_{3}^{\bullet 2} \\ \\ ({\Omega}^{T})_{1}^{\bullet 3} & ({\Omega}^{T})_{2}^{\bullet 3} & ({\Omega}^{T})_{3}^{\bullet 3} \end{bmatrix} =-\begin{bmatrix} {\Omega}_{1}^{\bullet 1} & {\Omega}_{2}^{\bullet 1} & {\Omega}_{3}^{\bullet 1} \\ \\ {\Omega}_{1}^{\bullet 2} & {\Omega}_{2}^{\bullet 2} & {\Omega}_{3}^{\bullet 2} \\ \\ {\Omega}_{1}^{\bullet 3} & {\Omega}_{2}^{\bullet 3} & {\Omega}_{3}^{\bullet 3} \end{bmatrix} =-{\Omega}_2 \\\ \\ %%%%%%%%%%%% ({\Omega}^{T})^{i}_{\bullet j}=-{\Omega}^{i}_{\bullet j} \Longrightarrow {\Omega}_2=({\Omega}^T)_{3}=[({\Omega}^{T})^{i}_{\bullet j}] =\begin{bmatrix} ({\Omega}^{T})^{1}_{\bullet 1} & ({\Omega}^{T})^{1}_{\bullet 2} & ({\Omega}^{T})^{1}_{\bullet 3} \\ \\ ({\Omega}^{T})^{2}_{\bullet 1} & ({\Omega}^{T})^{2}_{\bullet 2} & ({\Omega}^{T})^{2}_{\bullet 3} \\ \\ ({\Omega}^{T})^{3}_{\bullet 2} & ({\Omega}^{T})^{3}_{\bullet 2} & ({\Omega}^{T})^{3}_{\bullet 3} \end{bmatrix} =-\begin{bmatrix} {\Omega}^{1}_{\bullet 1} & {\Omega}^{1}_{\bullet 2} & {\Omega}^{1}_{\bullet 3} \\ \\ {\Omega}^{2}_{\bullet 1} & {\Omega}^{2}_{\bullet 2} & {\Omega}^{2}_{\bullet 3} \\ \\ {\Omega}^{3}_{\bullet 2} & {\Omega}^{3}_{\bullet 2} & {\Omega}^{3}_{\bullet 3} \end{bmatrix} =-{\Omega}_{3} \\\ \\ %%%%%%%%%%%% ({\Omega}^{T})^{ij}=-{\Omega}^{ij} \Longrightarrow ({\Omega}_4)^T=({\Omega}^T)_{4}=[({\Omega}^{T})^{ij}] =\begin{bmatrix} ({\Omega}^{T})^{11} & ({\Omega}^{T})^{12} & ({\Omega}^{T})^{13} \\ \\ ({\Omega}^{T})^{21} & ({\Omega}^{T})^{22} & ({\Omega}^{T})^{23} \\ \\ ({\Omega}^{T})^{31} & ({\Omega}^{T})^{32} & ({\Omega}^{T})^{33} \end{bmatrix} =-\begin{bmatrix} {\Omega}^{11} & {\Omega}^{12} & {\Omega}^{13} \\ \\ {\Omega}^{21} & {\Omega}^{22} & {\Omega}^{23} \\ \\ {\Omega}^{31} & {\Omega}^{32} & {\Omega}^{33} \end{bmatrix} =-{\Omega}_{4} (ΩT)ij=Ωij(Ω1)T=(ΩT)1=[(ΩT)ij]= (ΩT)11(ΩT)21(ΩT)31(ΩT)12(ΩT)22(ΩT)32(ΩT)13(ΩT)23(ΩT)33 = Ω11Ω21Ω31Ω12Ω22Ω32Ω13Ω23Ω33 =Ω1 (ΩT)ij=ΩijΩ3=(ΩT)2=[(ΩT)ij]= (ΩT)11(ΩT)12(ΩT)13(ΩT)21(ΩT)22(ΩT)23(ΩT)31(ΩT)32(ΩT)33 = Ω11Ω12Ω13Ω21Ω22Ω23Ω31Ω32Ω33 =Ω2 (ΩT)ji=ΩjiΩ2=(ΩT)3=[(ΩT)ji]= (ΩT)11(ΩT)12(ΩT)23(ΩT)21(ΩT)22(ΩT)23(ΩT)31(ΩT)32(ΩT)33 = Ω11Ω12Ω23Ω21Ω22Ω23Ω31Ω32Ω33 =Ω3 (ΩT)ij=Ωij(Ω4)T=(ΩT)4=[(ΩT)ij]= (ΩT)11(ΩT)21(ΩT)31(ΩT)12(ΩT)22(ΩT)32(ΩT)13(ΩT)23(ΩT)33 = Ω11Ω21Ω31Ω12Ω22Ω32Ω13Ω23Ω33 =Ω4可见,反对称二阶张量 Ω \bold{{\Omega}} Ω Ω 1 、 Ω 4 {\Omega}_1、{\Omega}_4 Ω1Ω4 矩阵为反对称矩阵且 Ω 2 = − Ω 3 {\Omega}_2=-{\Omega}_3 Ω2=Ω3,但 Ω 2 、 Ω 3 {\Omega}_2、{\Omega}_3 Ω2Ω3 一般并不是反对称矩阵

3. 二阶张量的行列式与矩阵的行列式

二阶张量对应的四种矩阵具有不同的行列式值,根据四种矩阵间的转换关系,有:
d e t ( τ 1 ) = g   d e t ( τ 2 ) = g   d e t ( τ 3 ) = g 2   d e t ( τ 4 ) ( 1 ) det(\tau_{1})=g\ det(\tau_{2})=g\ det(\tau_{3})=g^2\ det(\tau_{4})\qquad(1) det(τ1)=g det(τ2)=g det(τ3)=g2 det(τ4)(1)通常,定义张量 T \bold{T} T的行列式为 d e t ( T ) = d e t ( τ 3 ) det(\bold{T})=det(\tau_3) det(T)=det(τ3),根据行列式的定义及(1)式可知:互为转置的张量行列式相等,即 d e t ( T T ) = d e t ( T ) det(\bold{T^T})=det(\bold{T}) det(TT)=det(T)
二阶张量行列式的几何意义:通过 T 对矢量组进行映射,映射前后矢量组所构成的平行六面体的体积比为 d e t ( T ) det(\bold T) det(T)。证明如下:

行列式交换行/列与行列式的置换符号表述关系知
T ∙ p i T ∙ q j T ∙ l k e i j k = T ∙ 1 i T ∙ 2 j T ∙ 3 k e i j k e p q l = d e t ( [ T ∙ j i ] ) e p q l T^{i}_{\bullet p}T^{j}_{\bullet q}T^{k}_{\bullet l}e_{ijk} =T^{i}_{\bullet 1}T^{j}_{\bullet 2}T^{k}_{\bullet 3}e_{ijk}e_{pql} =det([T^{i}_{\bullet j}])e_{pql} TpiTqjTlkeijk=T1iT2jT3keijkepql=det([Tji])epql那么,
[ T ∙ u ⃗ T ∙ v ⃗ T ∙ w ⃗ ]   = ( T ∙ p i u p ) ( T ∙ q j v q ) ( T ∙ l k w l ) ϵ i j k   = ( T ∙ p i T ∙ q j T ∙ l k e i j k ) ( u p v q w l ) g   = d e t ( [ T ∙ j i ] ) ( u p v q w l g e p q l )   = d e t ( [ T ∙ j i ] ) ( u p v q w l ϵ p q l )   = d e t ( τ 3 ) [ u ⃗ v ⃗ w ⃗ ] \begin{aligned} &\quad\begin{bmatrix}T\bullet\vec{u} & T\bullet\vec{v} & T\bullet\vec{w}\end{bmatrix}\\\ \\ &=(T^{i}_{\bullet p}u^p)(T^{j}_{\bullet q}v^q)(T^{k}_{\bullet l}w^l)\epsilon_{ijk}\\\ \\ &=(T^{i}_{\bullet p}T^{j}_{\bullet q}T^{k}_{\bullet l}e_{ijk})(u^pv^qw^l)\sqrt{g}\\\ \\ &=det([T^{i}_{\bullet j}])(u^pv^qw^l\sqrt{g}e_{pql})\\\ \\ &=det([T^{i}_{\bullet j}])(u^pv^qw^l\epsilon_{pql})\\\ \\ &=det(\tau_3)\begin{bmatrix}\vec{u} & \vec{v} & \vec{w}\end{bmatrix} \end{aligned}      [Tu Tv Tw ]=(Tpiup)(Tqjvq)(Tlkwl)ϵijk=(TpiTqjTlkeijk)(upvqwl)g =det([Tji])(upvqwlg epql)=det([Tji])(upvqwlϵpql)=det(τ3)[u v w ]

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 是的,使用矩阵表示二维卷积和三维卷积时,它们的表示矩阵的维度确实是不同的。 二维卷积可以用一个二阶矩阵(也称为二维数组或矩阵)来表示,其中每个元素表示卷积核在输入图像上的权重值。 三维卷积则需要使用一个三阶矩阵(也称为三维数组或张量)来表示,其中第一个维度表示卷积核的数量,第二个和第三个维度表示卷积核的形状,即卷积核的高度和宽度。 因此,二维卷积和三维卷积的区别在于它们所需的表示矩阵的维度不同,这也导致它们在计算和使用上存在一些差异。 ### 回答2: 使用矩阵表示二维卷积和三维卷积时,区别主要表现为矩阵的维度和元素的含义。 二维卷积是在二维输入数据上进行滤波的操作,常用于图像处理。对于二维卷积,我们通常使用一个二阶矩阵(也称为卷积核)来表示卷积操作的权重。这个二阶矩阵的大小通常是一个正方形,其中的元素表示了在卷积过程中权重的分布。在进行卷积操作时,我们将这个二阶矩阵与输入数据的每个位置进行逐元素相乘,然后将所有相乘的结果相加,得到最终的卷积结果。 而三维卷积是在三维输入数据上进行滤波的操作,常用于视频处理等领域。对于三维卷积,我们使用一个三阶矩阵来表示卷积操作的权重。这个三阶矩阵的大小通常是一个立方体,其中的元素表示了在卷积过程中权重的分布。在进行卷积操作时,我们将这个三阶矩阵与输入数据的每个位置进行逐元素相乘,然后将所有相乘的结果相加,得到最终的卷积结果。 从上述描述可以看出,二维卷积和三维卷积的区别主要在于矩阵的维度和元素的含义。二维卷积使用二阶矩阵表示权重,而三维卷积使用三阶矩阵表示权重。这是因为二维卷积是在二维输入数据上进行滤波,而三维卷积是在三维输入数据上进行滤波。 ### 回答3: 在使用矩阵表示二维卷积和三维卷积时,二者的区别主要表现在矩阵的维度上。二维卷积是针对二维图像或特征图进行的操作,因此矩阵表示为二阶矩阵。而三维卷积是在二维卷积的基础上,针对包含时间维度的三维数据进行的操作,这样的数据可以是视频序列或者是具有时间信息的三维特征图。因此,三维卷积对应的矩阵表示为三阶矩阵。 二维卷积使用一个二维的卷积核对二维图像或特征图上的局部区域进行卷积运算,得到一个输出的二维特征图。卷积核的作用是提取图像或特征图中的特征信息。二维卷积常用于图像处理和计算机视觉任务中,如图像分类、目标检测等。 而三维卷积则在二维卷积的基础上引入了时间维度,用于处理时间序列数据或者具有时间信息的三维特征图。三维卷积核在时域和空域上进行卷积运算,可以同时提取时间序列和空间特征。三维卷积在视频分析、动作识别、语音识别等领域有广泛应用。 总之,二维卷积和三维卷积在矩阵表示上的区别主要体现在卷积核对应的矩阵维度上。二维卷积对应的是二阶矩阵,用于处理二维图像或特征图。而三维卷积对应的是三阶矩阵,用于处理包含时间信息的三维数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值