本文主要内容如下:
1. 二阶张量的坐标转换关系与矩阵的相似/合同变换
任意二阶张量
T
\bold{T}
T的坐标变换关系:
T
m
n
β
m
i
′
β
n
j
′
=
T
i
′
j
′
T
m
∙
n
β
i
′
m
β
n
j
′
=
T
i
′
∙
j
′
T
∙
n
m
β
m
i
′
β
j
′
n
=
T
∙
j
′
i
′
T
m
n
β
i
′
m
β
j
′
n
=
T
i
′
j
′
T^{mn}\beta^{i'}_m\beta^{j'}_n=T^{i'j'} \\\ \\ T_{m}^{\bullet n}\beta_{i'}^m\beta^{j'}_n=T_{i'}^{\bullet j'} \\\ \\ T^{m}_{\bullet n}\beta^{i'}_m\beta_{j'}^n=T^{i'}_{\bullet j'} \\\ \\ T_{mn}\beta_{i'}^m\beta_{j'}^n=T_{i'j'}
Tmnβmi′βnj′=Ti′j′ Tm∙nβi′mβnj′=Ti′∙j′ T∙nmβmi′βj′n=T∙j′i′ Tmnβi′mβj′n=Ti′j′相应地写作矩阵的形式有:
[
β
1
1
′
β
2
1
′
β
3
1
′
β
1
2
′
β
2
2
′
β
3
2
′
β
1
3
′
β
2
3
′
β
3
3
′
]
[
T
11
T
12
T
13
T
21
T
22
T
23
T
31
T
32
T
33
]
[
β
1
1
′
β
2
1
′
β
3
1
′
β
1
2
′
β
2
2
′
β
3
2
′
β
1
3
′
β
2
3
′
β
3
3
′
]
T
=
[
T
1
′
1
′
T
1
′
2
′
T
1
′
3
′
T
2
′
1
′
T
2
′
2
′
T
2
′
3
′
T
3
′
1
′
T
3
′
2
′
T
3
′
3
′
]
[
β
1
1
′
β
2
1
′
β
3
1
′
β
1
2
′
β
2
2
′
β
3
2
′
β
1
3
′
β
2
3
′
β
3
3
′
]
[
T
1
∙
1
T
2
∙
1
T
3
∙
1
T
1
∙
2
T
2
∙
2
T
3
∙
2
T
1
∙
3
T
2
∙
3
T
3
∙
3
]
[
β
1
′
1
β
2
′
1
β
3
′
1
β
1
′
2
β
2
′
2
β
3
′
2
β
1
′
3
β
2
′
3
β
3
′
3
]
=
[
T
1
′
∙
1
′
T
2
′
∙
1
′
T
3
′
∙
1
′
T
1
′
∙
2
′
T
2
′
∙
2
′
T
3
′
∙
2
′
T
1
′
∙
3
′
T
2
′
∙
3
′
T
3
′
∙
3
′
]
[
β
1
1
′
β
2
1
′
β
3
1
′
β
1
2
′
β
2
2
′
β
3
2
′
β
1
3
′
β
2
3
′
β
3
3
′
]
[
T
∙
1
1
T
∙
2
1
T
∙
3
1
T
∙
1
2
T
∙
2
2
T
∙
3
2
T
∙
1
3
T
∙
2
3
T
∙
3
3
]
[
β
1
′
1
β
2
′
1
β
3
′
1
β
1
′
2
β
2
′
2
β
3
′
2
β
1
′
3
β
2
′
3
β
3
′
3
]
=
[
T
∙
1
′
1
′
T
∙
2
′
1
′
T
∙
3
′
1
′
T
∙
1
′
2
′
T
∙
2
′
2
′
T
∙
3
′
2
′
T
∙
1
′
3
′
T
∙
2
′
3
′
T
∙
3
′
3
′
]
[
β
1
′
1
β
2
′
1
β
3
′
1
β
1
′
2
β
2
′
2
β
3
′
2
β
1
′
3
β
2
′
3
β
3
′
3
]
T
[
T
11
T
12
T
13
T
21
T
22
T
23
T
31
T
32
T
33
]
[
β
1
′
1
β
2
′
1
β
3
′
1
β
1
′
2
β
2
′
2
β
3
′
2
β
1
′
3
β
2
′
3
β
3
′
3
]
=
[
T
1
′
1
′
T
1
′
2
′
T
1
′
3
′
T
2
′
1
′
T
2
′
2
′
T
2
′
3
′
T
3
′
1
′
T
3
′
2
′
T
3
′
3
′
]
%%(T_1): \begin{bmatrix} \beta^{1'}_{1} & \beta^{1'}_{2} & \beta^{1'}_{3} \\\\ \beta^{2'}_{1} & \beta^{2'}_{2} & \beta^{2'}_{3} \\\\ \beta^{3'}_{1} & \beta^{3'}_{2} & \beta^{3'}_{3} \end{bmatrix} \begin{bmatrix} T^{11} & T^{12} & T^{13} \\\\ T^{21} & T^{22} & T^{23} \\\\ T^{31} & T^{32} & T^{33} \end{bmatrix} \begin{bmatrix} \beta^{1'}_{1} & \beta^{1'}_{2} & \beta^{1'}_{3} \\\\ \beta^{2'}_{1} & \beta^{2'}_{2} & \beta^{2'}_{3} \\\\ \beta^{3'}_{1} & \beta^{3'}_{2} & \beta^{3'}_{3} \end{bmatrix}^T =\ \begin{bmatrix} T^{1'1'} & T^{1'2'} & T^{1'3'} \\\\ T^{2'1'} & T^{2'2'} & T^{2'3'} \\\\ T^{3'1'} & T^{3'2'} & T^{3'3'} \end{bmatrix} \\\ \\ %%(T_2): \begin{bmatrix} \beta^{1'}_{1} & \beta^{1'}_{2} & \beta^{1'}_{3} \\\\ \beta^{2'}_{1} & \beta^{2'}_{2} & \beta^{2'}_{3} \\\\ \beta^{3'}_{1} & \beta^{3'}_{2} & \beta^{3'}_{3} \end{bmatrix} \begin{bmatrix} T_{1}^{\bullet 1} & T_{2}^{\bullet 1} & T_{3}^{\bullet 1} \\\\ T_{1}^{\bullet 2} & T_{2}^{\bullet 2} & T_{3}^{\bullet 2} \\\\ T_{1}^{\bullet 3} & T_{2}^{\bullet 3} & T_{3}^{\bullet 3} \end{bmatrix} \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix} =\ \begin{bmatrix} T_{1'}^{\bullet 1'} & T_{2'}^{\bullet 1'} & T_{3'}^{\bullet 1'} \\\\ T_{1'}^{\bullet 2'} & T_{2'}^{\bullet 2'} & T_{3'}^{\bullet 2'} \\\\ T_{1'}^{\bullet 3'} & T_{2'}^{\bullet 3'} & T_{3'}^{\bullet 3'} \end{bmatrix} \\\ \\ %%(T_3): \begin{bmatrix} \beta^{1'}_{1} & \beta^{1'}_{2} & \beta^{1'}_{3} \\\\ \beta^{2'}_{1} & \beta^{2'}_{2} & \beta^{2'}_{3} \\\\ \beta^{3'}_{1} & \beta^{3'}_{2} & \beta^{3'}_{3} \end{bmatrix} \begin{bmatrix} T^{1}_{\bullet 1} & T^{1}_{\bullet 2} & T^{1}_{\bullet 3} \\\\ T^{2}_{\bullet 1} & T^{2}_{\bullet 2} & T^{2}_{\bullet 3} \\\\ T^{3}_{\bullet 1} & T^{3}_{\bullet 2} & T^{3}_{\bullet 3} \end{bmatrix} \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix} =\ \begin{bmatrix} T^{1'}_{\bullet 1'} & T^{1'}_{\bullet 2'} & T^{1'}_{\bullet 3'} \\\\ T^{2'}_{\bullet 1'} & T^{2'}_{\bullet 2'} & T^{2'}_{\bullet 3'} \\\\ T^{3'}_{\bullet 1'} & T^{3'}_{\bullet 2'} & T^{3'}_{\bullet 3'} \end{bmatrix} \\\ \\ %%(T_4): \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix}^T \begin{bmatrix} T_{11} & T_{12} & T_{13} \\\\ T_{21} & T_{22} & T_{23} \\\\ T_{31} & T_{32} & T_{33} \end{bmatrix} \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix} =\ \begin{bmatrix} T_{1'1'} & T_{1'2'} & T_{1'3'} \\\\ T_{2'1'} & T_{2'2'} & T_{2'3'} \\\\ T_{3'1'} & T_{3'2'} & T_{3'3'} \end{bmatrix}
⎣
⎡β11′β12′β13′β21′β22′β23′β31′β32′β33′⎦
⎤⎣
⎡T11T21T31T12T22T32T13T23T33⎦
⎤⎣
⎡β11′β12′β13′β21′β22′β23′β31′β32′β33′⎦
⎤T= ⎣
⎡T1′1′T2′1′T3′1′T1′2′T2′2′T3′2′T1′3′T2′3′T3′3′⎦
⎤ ⎣
⎡β11′β12′β13′β21′β22′β23′β31′β32′β33′⎦
⎤⎣
⎡T1∙1T1∙2T1∙3T2∙1T2∙2T2∙3T3∙1T3∙2T3∙3⎦
⎤⎣
⎡β1′1β1′2β1′3β2′1β2′2β2′3β3′1β3′2β3′3⎦
⎤= ⎣
⎡T1′∙1′T1′∙2′T1′∙3′T2′∙1′T2′∙2′T2′∙3′T3′∙1′T3′∙2′T3′∙3′⎦
⎤ ⎣
⎡β11′β12′β13′β21′β22′β23′β31′β32′β33′⎦
⎤⎣
⎡T∙11T∙12T∙13T∙21T∙22T∙23T∙31T∙32T∙33⎦
⎤⎣
⎡β1′1β1′2β1′3β2′1β2′2β2′3β3′1β3′2β3′3⎦
⎤= ⎣
⎡T∙1′1′T∙1′2′T∙1′3′T∙2′1′T∙2′2′T∙2′3′T∙3′1′T∙3′2′T∙3′3′⎦
⎤ ⎣
⎡β1′1β1′2β1′3β2′1β2′2β2′3β3′1β3′2β3′3⎦
⎤T⎣
⎡T11T21T31T12T22T32T13T23T33⎦
⎤⎣
⎡β1′1β1′2β1′3β2′1β2′2β2′3β3′1β3′2β3′3⎦
⎤= ⎣
⎡T1′1′T2′1′T3′1′T1′2′T2′2′T3′2′T1′3′T2′3′T3′3′⎦
⎤另外,由于协变转换系数矩阵与逆变转换系数矩阵互逆且协、逆变转换系数矩阵一般不是正交矩阵。那么,张量分量的坐标变换关系对应于矩阵
τ
2
、
τ
3
\tau_2、\tau_3
τ2、τ3的相似变换(相似变换矩阵为协变转换系数矩阵)或者矩阵
τ
1
、
τ
4
\tau_1、\tau_4
τ1、τ4的合同变换(
τ
1
\tau_1
τ1的合同变换矩阵为逆变转换系数矩阵的转置矩阵,
τ
4
\tau_4
τ4的合同变换矩阵为协变转换系数矩阵)。
2. 实对称二阶张量的标准形
实对称二阶张量的
τ
1
、
τ
4
\tau_1、\tau_4
τ1、τ4矩阵为实对称矩阵,但
τ
2
、
τ
3
\tau_2、\tau_3
τ2、τ3矩阵一般不为对称矩阵。根据线性代数相关知识我们知道:实对称矩阵可正交合同/相似于对角阵,即
[
β
1
′
1
β
2
′
1
β
3
′
1
β
1
′
2
β
2
′
2
β
3
′
2
β
1
′
3
β
2
′
3
β
3
′
3
]
T
[
T
11
T
12
T
13
T
21
T
22
T
23
T
31
T
32
T
33
]
[
β
1
′
1
β
2
′
1
β
3
′
1
β
1
′
2
β
2
′
2
β
3
′
2
β
1
′
3
β
2
′
3
β
3
′
3
]
=
[
T
1
′
1
′
0
0
0
T
2
′
2
′
0
0
0
T
3
′
3
′
]
(
1
)
\begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix}^T \begin{bmatrix} T_{11} & T_{12} & T_{13} \\\\ T_{21} & T_{22} & T_{23} \\\\ T_{31} & T_{32} & T_{33} \end{bmatrix} \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix} =\ \begin{bmatrix} T_{1'1'} & 0 & 0 \\\\ 0 & T_{2'2'} & 0 \\\\ 0 & 0 & T_{3'3'} \end{bmatrix} \qquad(1)
⎣
⎡β1′1β1′2β1′3β2′1β2′2β2′3β3′1β3′2β3′3⎦
⎤T⎣
⎡T11T21T31T12T22T32T13T23T33⎦
⎤⎣
⎡β1′1β1′2β1′3β2′1β2′2β2′3β3′1β3′2β3′3⎦
⎤= ⎣
⎡T1′1′000T2′2′000T3′3′⎦
⎤(1)且
[
β
1
′
1
β
2
′
1
β
3
′
1
β
1
′
2
β
2
′
2
β
3
′
2
β
1
′
3
β
2
′
3
β
3
′
3
]
T
[
β
1
′
1
β
2
′
1
β
3
′
1
β
1
′
2
β
2
′
2
β
3
′
2
β
1
′
3
β
2
′
3
β
3
′
3
]
=
E
\begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix}^T \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix} =E
⎣
⎡β1′1β1′2β1′3β2′1β2′2β2′3β3′1β3′2β3′3⎦
⎤T⎣
⎡β1′1β1′2β1′3β2′1β2′2β2′3β3′1β3′2β3′3⎦
⎤=E故,类比思考提出:
\qquad\qquad\qquad
实对称张量能否在某一坐标系(某组基)下满足仅对角元素不为零?
上述问题的回答是肯定的,下面予以讨论:
考虑实对称二阶张量
N
\bold{N}
N在具有标准正交基的曲线坐标系(如笛卡尔坐标系)和其它任意坐标系之间的坐标转换关系:
N
=
N
m
n
g
⃗
m
g
⃗
n
=
N
m
n
(
β
i
′
m
g
⃗
i
′
)
(
β
j
′
n
g
⃗
j
′
)
=
N
m
n
β
i
′
m
β
j
′
n
g
⃗
i
′
g
⃗
j
′
=
N
i
′
j
′
g
⃗
i
′
g
⃗
j
′
\bold{N}= N_{mn}\vec{g}^{m}\vec{g}^{n}= N_{mn}(\beta^{m}_{i'}\vec{g}^{i'})(\beta^{n}_{j'}\vec{g}^{j'})= N_{mn}\beta^{m}_{i'}\beta^{n}_{j'}\vec{g}^{i'}\vec{g}^{j'}= N_{i'j'}\vec{g}^{i'}\vec{g}^{j'}
N=Nmngmgn=Nmn(βi′mgi′)(βj′ngj′)=Nmnβi′mβj′ngi′gj′=Ni′j′gi′gj′其中,
{
g
⃗
1
,
g
⃗
2
,
g
⃗
3
}
\{\vec{g}^1,\vec{g}^2,\vec{g}^3\}
{g1,g2,g3}为标准正交基。
现考虑能否在新的坐标系中仅对角元素(
N
1
′
1
′
、
N
2
′
2
′
、
N
3
′
3
′
N_{1'1'}、N_{2'2'}、N_{3'3'}
N1′1′、N2′2′、N3′3′)非零?联系与坐标转换关系对应的矩阵形式,并且由于实对称张量对应的
N
4
N_4
N4为实对称矩阵,这意味着,必定存在某一特定坐标系使得实对称二阶张量的协变分量仅对角元素非零。根据坐标转换关系知这一坐标系的逆变基矢与原坐标系的逆变基矢存在如下关系:
{
g
⃗
1
=
β
1
′
1
g
⃗
1
′
+
β
2
′
1
g
⃗
2
′
+
β
3
′
1
g
⃗
3
′
g
⃗
2
=
β
1
′
2
g
⃗
1
′
+
β
2
′
2
g
⃗
2
′
+
β
3
′
2
g
⃗
3
′
g
⃗
3
=
β
1
′
3
g
⃗
1
′
+
β
2
′
3
g
⃗
2
′
+
β
3
′
3
g
⃗
3
′
\begin{cases} \vec{g}^1=\beta^1_{1'}\vec{g}^{1'}+\beta^1_{2'}\vec{g}^{2'}+\beta^1_{3'}\vec{g}^{3'}\\\ \\ \vec{g}^2=\beta^2_{1'}\vec{g}^{1'}+\beta^2_{2'}\vec{g}^{2'}+\beta^2_{3'}\vec{g}^{3'}\\\ \\ \vec{g}^3=\beta^3_{1'}\vec{g}^{1'}+\beta^3_{2'}\vec{g}^{2'}+\beta^3_{3'}\vec{g}^{3'} \end{cases}
⎩
⎨
⎧g1=β1′1g1′+β2′1g2′+β3′1g3′ g2=β1′2g1′+β2′2g2′+β3′2g3′ g3=β1′3g1′+β2′3g2′+β3′3g3′又由于联系原坐标系与这一特定坐标系的协变转换系数对应的矩阵
[
β
1
′
1
β
2
′
1
β
3
′
1
β
1
′
2
β
2
′
2
β
3
′
2
β
1
′
3
β
2
′
3
β
3
′
3
]
\begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix}
⎣
⎡β1′1β1′2β1′3β2′1β2′2β2′3β3′1β3′2β3′3⎦
⎤为正交矩阵,那么该阵的列向量组为标准正交组,且有
[
g
⃗
1
′
g
⃗
2
′
g
⃗
3
′
]
=
[
β
1
′
1
β
2
′
1
β
3
′
1
β
1
′
2
β
2
′
2
β
3
′
2
β
1
′
3
β
2
′
3
β
3
′
3
]
−
1
[
g
⃗
1
g
⃗
2
g
⃗
3
]
=
[
β
1
′
1
β
1
′
2
β
1
′
3
β
2
′
1
β
2
′
2
β
2
′
3
β
3
′
1
β
3
′
2
β
3
′
3
]
[
g
⃗
1
g
⃗
2
g
⃗
3
]
\begin{bmatrix}\vec{g}^{1'} \\\\ \vec{g}^{2'} \\\\ \vec{g}^{3'}\end{bmatrix}= \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix}^{-1} \begin{bmatrix}\vec{g}^{1} \\\\ \vec{g}^{2} \\\\ \vec{g}^{3}\end{bmatrix}= \begin{bmatrix} \beta^{1}_{1'} & \beta^{2}_{1'} & \beta^{3}_{1'} \\\\ \beta^{1}_{2'} & \beta^{2}_{2'} & \beta^{3}_{2'} \\\\ \beta^{1}_{3'} & \beta^{2}_{3'} & \beta^{3}_{3'} \end{bmatrix} \begin{bmatrix}\vec{g}^{1} \\\\ \vec{g}^{2} \\\\ \vec{g}^{3}\end{bmatrix}
⎣
⎡g1′g2′g3′⎦
⎤=⎣
⎡β1′1β1′2β1′3β2′1β2′2β2′3β3′1β3′2β3′3⎦
⎤−1⎣
⎡g1g2g3⎦
⎤=⎣
⎡β1′1β2′1β3′1β1′2β2′2β3′2β1′3β2′3β3′3⎦
⎤⎣
⎡g1g2g3⎦
⎤即
{
g
⃗
1
′
=
β
1
′
1
g
⃗
1
+
β
1
′
2
g
⃗
2
+
β
1
′
3
g
⃗
3
g
⃗
2
′
=
β
2
′
1
g
⃗
1
+
β
2
′
2
g
⃗
2
+
β
2
′
3
g
⃗
3
g
⃗
3
′
=
β
3
′
1
g
⃗
1
+
β
3
′
2
g
⃗
2
+
β
3
′
3
g
⃗
3
\begin{cases} \vec{g}^{1'}=\beta^{1}_{1'}\vec{g}^{1} + \beta^{2}_{1'}\vec{g}^{2} + \beta^{3}_{1'}\vec{g}^{3} \\\ \\ \vec{g}^{2'}=\beta^{1}_{2'}\vec{g}^{1} + \beta^{2}_{2'}\vec{g}^{2} + \beta^{3}_{2'}\vec{g}^{3} \\\ \\ \vec{g}^{3'}=\beta^{1}_{3'}\vec{g}^{1} + \beta^{2}_{3'}\vec{g}^{2} + \beta^{3}_{3'}\vec{g}^{3} \end{cases}
⎩
⎨
⎧g1′=β1′1g1+β1′2g2+β1′3g3 g2′=β2′1g1+β2′2g2+β2′3g3 g3′=β3′1g1+β3′2g2+β3′3g3根据这点可知:使得对称张量协变分量为零的新坐标系的逆变基
{
g
⃗
1
′
,
g
⃗
2
′
,
g
⃗
3
′
}
\{\vec{g}^{1'},\vec{g}^{2'},\vec{g}^{3'}\}
{g1′,g2′,g3′}也是标准正交基,因为:
g
⃗
i
′
∙
g
⃗
j
′
=
(
β
i
′
1
g
⃗
1
+
β
i
′
2
g
⃗
2
+
β
i
′
3
g
⃗
3
)
∙
(
β
j
′
1
g
⃗
1
+
β
j
′
2
g
⃗
2
+
β
j
′
3
g
⃗
3
)
=
[
β
i
′
1
β
i
′
2
β
i
′
3
]
[
g
⃗
1
∙
g
⃗
1
g
⃗
1
∙
g
⃗
2
g
⃗
1
∙
g
⃗
3
g
⃗
2
∙
g
⃗
1
g
⃗
2
∙
g
⃗
2
g
⃗
2
∙
g
⃗
3
g
⃗
3
∙
g
⃗
1
g
⃗
3
∙
g
⃗
2
g
⃗
3
∙
g
⃗
3
]
[
β
j
′
1
β
j
′
2
β
j
′
3
]
=
[
β
i
′
1
β
i
′
2
β
i
′
3
]
[
β
j
′
1
β
j
′
2
β
j
′
3
]
=
{
0
(
i
′
=
j
′
)
1
(
i
′
≠
j
′
)
(
i
′
,
j
′
=
1
′
,
2
′
,
3
′
)
\begin{aligned} &\quad\ \vec{g}^{i'}\bullet\vec{g}^{j'}= (\beta^{1}_{i'}\vec{g}^{1} + \beta^{2}_{i'}\vec{g}^{2} + \beta^{3}_{i'}\vec{g}^{3})\bullet(\beta^{1}_{j'}\vec{g}^{1} + \beta^{2}_{j'}\vec{g}^{2} + \beta^{3}_{j'}\vec{g}^{3}) \\\ \\ &=\begin{bmatrix} \beta^{1}_{i'} & \beta^{2}_{i'} & \beta^{3}_{i'} \end{bmatrix} \begin{bmatrix} \vec{g}^1\bullet\vec{g}^1 & \vec{g}^1\bullet\vec{g}^2 & \vec{g}^1\bullet\vec{g}^3 \\\\ \vec{g}^2\bullet\vec{g}^1 & \vec{g}^2\bullet\vec{g}^2 & \vec{g}^2\bullet\vec{g}^3 \\\\ \vec{g}^3\bullet\vec{g}^1 & \vec{g}^3\bullet\vec{g}^2 & \vec{g}^3\bullet\vec{g}^3 \end{bmatrix} \begin{bmatrix} \beta^{1}_{j'} \\\\ \beta^{2}_{j'} \\\\ \beta^{3}_{j'} \end{bmatrix}\\\ \\ &=\begin{bmatrix} \beta^{1}_{i'} & \beta^{2}_{i'} & \beta^{3}_{i'} \end{bmatrix} \begin{bmatrix} \beta^{1}_{j'} \\\\ \beta^{2}_{j'} \\\\ \beta^{3}_{j'} \end{bmatrix}\\\ \\ &=\begin{cases}0\quad(i'=j')\\1\quad(i'\ne j')\end{cases} \qquad(i',j'=1',2',3') \end{aligned}
gi′∙gj′=(βi′1g1+βi′2g2+βi′3g3)∙(βj′1g1+βj′2g2+βj′3g3)=[βi′1βi′2βi′3]⎣
⎡g1∙g1g2∙g1g3∙g1g1∙g2g2∙g2g3∙g2g1∙g3g2∙g3g3∙g3⎦
⎤⎣
⎡βj′1βj′2βj′3⎦
⎤=[βi′1βi′2βi′3]⎣
⎡βj′1βj′2βj′3⎦
⎤={0(i′=j′)1(i′=j′)(i′,j′=1′,2′,3′)那么,新坐标系中协变基与逆变基重合,即
g
⃗
i
=
g
⃗
i
=
e
⃗
i
\vec{g}^{i}=\vec{g}_{i}=\vec{e}_i
gi=gi=ei各类张量分量分别对应相等,即
[
N
1
]
=
[
N
2
]
=
[
N
3
]
=
[
N
4
]
[N_1]=[N_2]=[N_3]=[N_4]
[N1]=[N2]=[N3]=[N4]从上述讨论可知:对于实对称二阶张量,必定存在某坐标系(某组标准正交基)使得该实对称张量在该坐标系展开有如下形式:
N
=
λ
1
e
⃗
1
e
⃗
1
+
λ
2
e
⃗
2
e
⃗
2
+
λ
3
e
⃗
3
e
⃗
3
\bold N=\lambda_1\vec{e}_1\vec{e}_1+\lambda_2\vec{e}_2\vec{e}_2+\lambda_3\vec{e}_3\vec{e}_3
N=λ1e1e1+λ2e2e2+λ3e3e3将上述形式称作实对称二阶张量的标准形,
λ
1
、
λ
2
、
λ
3
\lambda_1、\lambda_2、\lambda_3
λ1、λ2、λ3称作实对称二阶张量的主分量,标准正交基
e
⃗
1
、
e
⃗
2
、
e
⃗
3
\vec{e}_1、\vec{e}_2、\vec{e}_3
e1、e2、e3称作实对称二阶张量的主(轴)方向,对应的坐标系称作实对称二阶张量的主坐标系。进一步,注意到
N
∙
e
⃗
i
=
(
λ
1
e
⃗
1
e
⃗
1
+
λ
2
e
⃗
2
e
⃗
2
+
λ
3
e
⃗
3
e
⃗
3
)
∙
e
⃗
i
=
λ
i
e
⃗
i
(
i
=
1
,
2
,
3
)
\bold{N}\bullet\vec{e}_i= (\lambda_1\vec{e}_1\vec{e}_1+\lambda_2\vec{e}_2\vec{e}_2+\lambda_3\vec{e}_3\vec{e}_3)\bullet\vec{e}_i =\lambda_i\vec{e}_i \quad(i=1,2,3)
N∙ei=(λ1e1e1+λ2e2e2+λ3e3e3)∙ei=λiei(i=1,2,3)这意味着,实对称二阶张量的主方向由其特征向量构成,主分量为其特征值。因为主方向是柱坐标系的基,那么主方向间是线性无关的,换而言之对于实对称张量必定存在三个线性无关的特征向量,又或者说实对称张量的几何重数等于代数重数。
当实对称张量的特征方程有重根时,主方向显然是不唯一的,特别地,当实对称张量有三重特征值时,该张量在空间中的任何标准正交基上进行展开,都将得到其对角标准形。我们将这种具有三重特征值(主分量相同)的实对称张量称作球形张量,记作
P
\bold P
P。根据定义,度量张量为球形张量,且有:
P
1
=
P
2
=
P
3
=
1
3
C
1
P
⟺
P
=
1
3
C
1
P
G
P_1=P_2=P_3=\frac{1}{3} \mathscr{C}^P_1 \Longleftrightarrow \bold P=\frac{1}{3} \mathscr{C}^P_1 \bold G
P1=P2=P3=31C1P⟺P=31C1PG