(十 一)实对称二阶张量的(对角)标准形

本文探讨了二阶张量在不同坐标系间的坐标变换关系,包括矩阵的相似和合同变换。实对称二阶张量在特定坐标系下可以达到标准形,即只有对角元素非零,这些元素是张量的主分量,而对应的坐标系称为主坐标系。此外,张量的主方向由其特征向量给出,主分量为其特征值。
摘要由CSDN通过智能技术生成

1. 二阶张量的坐标转换关系与矩阵的相似/合同变换

任意二阶张量 T \bold{T} T的坐标变换关系:
T m n β m i ′ β n j ′ = T i ′ j ′   T m ∙ n β i ′ m β n j ′ = T i ′ ∙ j ′   T ∙ n m β m i ′ β j ′ n = T ∙ j ′ i ′   T m n β i ′ m β j ′ n = T i ′ j ′ T^{mn}\beta^{i'}_m\beta^{j'}_n=T^{i'j'} \\\ \\ T_{m}^{\bullet n}\beta_{i'}^m\beta^{j'}_n=T_{i'}^{\bullet j'} \\\ \\ T^{m}_{\bullet n}\beta^{i'}_m\beta_{j'}^n=T^{i'}_{\bullet j'} \\\ \\ T_{mn}\beta_{i'}^m\beta_{j'}^n=T_{i'j'} Tmnβmiβnj=Tij Tmnβimβnj=Tij Tnmβmiβjn=Tji Tmnβimβjn=Tij相应地写作矩阵的形式有:
[ β 1 1 ′ β 2 1 ′ β 3 1 ′ β 1 2 ′ β 2 2 ′ β 3 2 ′ β 1 3 ′ β 2 3 ′ β 3 3 ′ ] [ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ] [ β 1 1 ′ β 2 1 ′ β 3 1 ′ β 1 2 ′ β 2 2 ′ β 3 2 ′ β 1 3 ′ β 2 3 ′ β 3 3 ′ ] T =   [ T 1 ′ 1 ′ T 1 ′ 2 ′ T 1 ′ 3 ′ T 2 ′ 1 ′ T 2 ′ 2 ′ T 2 ′ 3 ′ T 3 ′ 1 ′ T 3 ′ 2 ′ T 3 ′ 3 ′ ]   [ β 1 1 ′ β 2 1 ′ β 3 1 ′ β 1 2 ′ β 2 2 ′ β 3 2 ′ β 1 3 ′ β 2 3 ′ β 3 3 ′ ] [ T 1 ∙ 1 T 2 ∙ 1 T 3 ∙ 1 T 1 ∙ 2 T 2 ∙ 2 T 3 ∙ 2 T 1 ∙ 3 T 2 ∙ 3 T 3 ∙ 3 ] [ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] =   [ T 1 ′ ∙ 1 ′ T 2 ′ ∙ 1 ′ T 3 ′ ∙ 1 ′ T 1 ′ ∙ 2 ′ T 2 ′ ∙ 2 ′ T 3 ′ ∙ 2 ′ T 1 ′ ∙ 3 ′ T 2 ′ ∙ 3 ′ T 3 ′ ∙ 3 ′ ]   [ β 1 1 ′ β 2 1 ′ β 3 1 ′ β 1 2 ′ β 2 2 ′ β 3 2 ′ β 1 3 ′ β 2 3 ′ β 3 3 ′ ] [ T ∙ 1 1 T ∙ 2 1 T ∙ 3 1 T ∙ 1 2 T ∙ 2 2 T ∙ 3 2 T ∙ 1 3 T ∙ 2 3 T ∙ 3 3 ] [ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] =   [ T ∙ 1 ′ 1 ′ T ∙ 2 ′ 1 ′ T ∙ 3 ′ 1 ′ T ∙ 1 ′ 2 ′ T ∙ 2 ′ 2 ′ T ∙ 3 ′ 2 ′ T ∙ 1 ′ 3 ′ T ∙ 2 ′ 3 ′ T ∙ 3 ′ 3 ′ ]   [ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] T [ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ] [ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] =   [ T 1 ′ 1 ′ T 1 ′ 2 ′ T 1 ′ 3 ′ T 2 ′ 1 ′ T 2 ′ 2 ′ T 2 ′ 3 ′ T 3 ′ 1 ′ T 3 ′ 2 ′ T 3 ′ 3 ′ ] %%(T_1): \begin{bmatrix} \beta^{1'}_{1} & \beta^{1'}_{2} & \beta^{1'}_{3} \\\\ \beta^{2'}_{1} & \beta^{2'}_{2} & \beta^{2'}_{3} \\\\ \beta^{3'}_{1} & \beta^{3'}_{2} & \beta^{3'}_{3} \end{bmatrix} \begin{bmatrix} T^{11} & T^{12} & T^{13} \\\\ T^{21} & T^{22} & T^{23} \\\\ T^{31} & T^{32} & T^{33} \end{bmatrix} \begin{bmatrix} \beta^{1'}_{1} & \beta^{1'}_{2} & \beta^{1'}_{3} \\\\ \beta^{2'}_{1} & \beta^{2'}_{2} & \beta^{2'}_{3} \\\\ \beta^{3'}_{1} & \beta^{3'}_{2} & \beta^{3'}_{3} \end{bmatrix}^T =\ \begin{bmatrix} T^{1'1'} & T^{1'2'} & T^{1'3'} \\\\ T^{2'1'} & T^{2'2'} & T^{2'3'} \\\\ T^{3'1'} & T^{3'2'} & T^{3'3'} \end{bmatrix} \\\ \\ %%(T_2): \begin{bmatrix} \beta^{1'}_{1} & \beta^{1'}_{2} & \beta^{1'}_{3} \\\\ \beta^{2'}_{1} & \beta^{2'}_{2} & \beta^{2'}_{3} \\\\ \beta^{3'}_{1} & \beta^{3'}_{2} & \beta^{3'}_{3} \end{bmatrix} \begin{bmatrix} T_{1}^{\bullet 1} & T_{2}^{\bullet 1} & T_{3}^{\bullet 1} \\\\ T_{1}^{\bullet 2} & T_{2}^{\bullet 2} & T_{3}^{\bullet 2} \\\\ T_{1}^{\bullet 3} & T_{2}^{\bullet 3} & T_{3}^{\bullet 3} \end{bmatrix} \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix} =\ \begin{bmatrix} T_{1'}^{\bullet 1'} & T_{2'}^{\bullet 1'} & T_{3'}^{\bullet 1'} \\\\ T_{1'}^{\bullet 2'} & T_{2'}^{\bullet 2'} & T_{3'}^{\bullet 2'} \\\\ T_{1'}^{\bullet 3'} & T_{2'}^{\bullet 3'} & T_{3'}^{\bullet 3'} \end{bmatrix} \\\ \\ %%(T_3): \begin{bmatrix} \beta^{1'}_{1} & \beta^{1'}_{2} & \beta^{1'}_{3} \\\\ \beta^{2'}_{1} & \beta^{2'}_{2} & \beta^{2'}_{3} \\\\ \beta^{3'}_{1} & \beta^{3'}_{2} & \beta^{3'}_{3} \end{bmatrix} \begin{bmatrix} T^{1}_{\bullet 1} & T^{1}_{\bullet 2} & T^{1}_{\bullet 3} \\\\ T^{2}_{\bullet 1} & T^{2}_{\bullet 2} & T^{2}_{\bullet 3} \\\\ T^{3}_{\bullet 1} & T^{3}_{\bullet 2} & T^{3}_{\bullet 3} \end{bmatrix} \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix} =\ \begin{bmatrix} T^{1'}_{\bullet 1'} & T^{1'}_{\bullet 2'} & T^{1'}_{\bullet 3'} \\\\ T^{2'}_{\bullet 1'} & T^{2'}_{\bullet 2'} & T^{2'}_{\bullet 3'} \\\\ T^{3'}_{\bullet 1'} & T^{3'}_{\bullet 2'} & T^{3'}_{\bullet 3'} \end{bmatrix} \\\ \\ %%(T_4): \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix}^T \begin{bmatrix} T_{11} & T_{12} & T_{13} \\\\ T_{21} & T_{22} & T_{23} \\\\ T_{31} & T_{32} & T_{33} \end{bmatrix} \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix} =\ \begin{bmatrix} T_{1'1'} & T_{1'2'} & T_{1'3'} \\\\ T_{2'1'} & T_{2'2'} & T_{2'3'} \\\\ T_{3'1'} & T_{3'2'} & T_{3'3'} \end{bmatrix} β11β12β13β21β22β23β31β32β33 T11T21T31T12T22T32T13T23T33 β11β12β13β21β22β23β31β32β33 T=  T11T21T31T12T22T32T13T23T33   β11β12β13β21β22β23β31β32β33 T11T12T13T21T22T23T31T32T33 β11β12β13β21β22β23β31β32β33 =  T11T12T13T21T22T23T31T32T33   β11β12β13β21β22β23β31β32β33 T11T12T13T21T22T23T31T32T33 β11β12β13β21β22β23β31β32β33 =  T11T12T13T21T22T23T31T32T33   β11β12β13β21β22β23β31β32β33 T T11T21T31T12T22T32T13T23T33 β11β12β13β21β22β23β31β32β33 =  T11T21T31T12T22T32T13T23T33 另外,由于协变转换系数矩阵与逆变转换系数矩阵互逆且协、逆变转换系数矩阵一般不是正交矩阵。那么,张量分量的坐标变换关系对应于矩阵 τ 2 、 τ 3 \tau_2、\tau_3 τ2τ3的相似变换(相似变换矩阵为协变转换系数矩阵)或者矩阵 τ 1 、 τ 4 \tau_1、\tau_4 τ1τ4的合同变换( τ 1 \tau_1 τ1的合同变换矩阵为逆变转换系数矩阵的转置矩阵, τ 4 \tau_4 τ4的合同变换矩阵为协变转换系数矩阵)

2. 实对称二阶张量的标准形

实对称二阶张量的 τ 1 、 τ 4 \tau_1、\tau_4 τ1τ4矩阵为实对称矩阵,但 τ 2 、 τ 3 \tau_2、\tau_3 τ2τ3矩阵一般不为对称矩阵。根据线性代数相关知识我们知道:实对称矩阵可正交合同/相似于对角阵,即
[ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] T [ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ] [ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] =   [ T 1 ′ 1 ′ 0 0 0 T 2 ′ 2 ′ 0 0 0 T 3 ′ 3 ′ ] ( 1 ) \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix}^T \begin{bmatrix} T_{11} & T_{12} & T_{13} \\\\ T_{21} & T_{22} & T_{23} \\\\ T_{31} & T_{32} & T_{33} \end{bmatrix} \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix} =\ \begin{bmatrix} T_{1'1'} & 0 & 0 \\\\ 0 & T_{2'2'} & 0 \\\\ 0 & 0 & T_{3'3'} \end{bmatrix} \qquad(1) β11β12β13β21β22β23β31β32β33 T T11T21T31T12T22T32T13T23T33 β11β12β13β21β22β23β31β32β33 =  T11000T22000T33 (1)
[ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] T [ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] = E \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix}^T \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix} =E β11β12β13β21β22β23β31β32β33 T β11β12β13β21β22β23β31β32β33 =E故,类比思考提出:
\qquad\qquad\qquad 实对称张量能否在某一坐标系(某组基)下满足仅对角元素不为零?
上述问题的回答是肯定的,下面予以讨论:
考虑实对称二阶张量 N \bold{N} N具有标准正交基的曲线坐标系(如笛卡尔坐标系)和其它任意坐标系之间的坐标转换关系:
N = N m n g ⃗ m g ⃗ n = N m n ( β i ′ m g ⃗ i ′ ) ( β j ′ n g ⃗ j ′ ) = N m n β i ′ m β j ′ n g ⃗ i ′ g ⃗ j ′ = N i ′ j ′ g ⃗ i ′ g ⃗ j ′ \bold{N}= N_{mn}\vec{g}^{m}\vec{g}^{n}= N_{mn}(\beta^{m}_{i'}\vec{g}^{i'})(\beta^{n}_{j'}\vec{g}^{j'})= N_{mn}\beta^{m}_{i'}\beta^{n}_{j'}\vec{g}^{i'}\vec{g}^{j'}= N_{i'j'}\vec{g}^{i'}\vec{g}^{j'} N=Nmng mg n=Nmn(βimg i)(βjng j)=Nmnβimβjng ig j=Nijg ig j其中, { g ⃗ 1 , g ⃗ 2 , g ⃗ 3 } \{\vec{g}^1,\vec{g}^2,\vec{g}^3\} {g 1g 2g 3}为标准正交基

现考虑能否在新的坐标系中仅对角元素( N 1 ′ 1 ′ 、 N 2 ′ 2 ′ 、 N 3 ′ 3 ′ N_{1'1'}、N_{2'2'}、N_{3'3'} N11N22N33)非零?联系与坐标转换关系对应的矩阵形式,并且由于实对称张量对应的 N 4 N_4 N4为实对称矩阵,这意味着,必定存在某一特定坐标系使得实对称二阶张量的协变分量仅对角元素非零。根据坐标转换关系知这一坐标系的逆变基矢与原坐标系的逆变基矢存在如下关系:
{ g ⃗ 1 = β 1 ′ 1 g ⃗ 1 ′ + β 2 ′ 1 g ⃗ 2 ′ + β 3 ′ 1 g ⃗ 3 ′   g ⃗ 2 = β 1 ′ 2 g ⃗ 1 ′ + β 2 ′ 2 g ⃗ 2 ′ + β 3 ′ 2 g ⃗ 3 ′   g ⃗ 3 = β 1 ′ 3 g ⃗ 1 ′ + β 2 ′ 3 g ⃗ 2 ′ + β 3 ′ 3 g ⃗ 3 ′ \begin{cases} \vec{g}^1=\beta^1_{1'}\vec{g}^{1'}+\beta^1_{2'}\vec{g}^{2'}+\beta^1_{3'}\vec{g}^{3'}\\\ \\ \vec{g}^2=\beta^2_{1'}\vec{g}^{1'}+\beta^2_{2'}\vec{g}^{2'}+\beta^2_{3'}\vec{g}^{3'}\\\ \\ \vec{g}^3=\beta^3_{1'}\vec{g}^{1'}+\beta^3_{2'}\vec{g}^{2'}+\beta^3_{3'}\vec{g}^{3'} \end{cases} g 1=β11g 1+β21g 2+β31g 3 g 2=β12g 1+β22g 2+β32g 3 g 3=β13g 1+β23g 2+β33g 3又由于联系原坐标系与这一特定坐标系的协变转换系数对应的矩阵
[ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix} β11β12β13β21β22β23β31β32β33 为正交矩阵,那么该阵的列向量组为标准正交组,且有
[ g ⃗ 1 ′ g ⃗ 2 ′ g ⃗ 3 ′ ] = [ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] − 1 [ g ⃗ 1 g ⃗ 2 g ⃗ 3 ] = [ β 1 ′ 1 β 1 ′ 2 β 1 ′ 3 β 2 ′ 1 β 2 ′ 2 β 2 ′ 3 β 3 ′ 1 β 3 ′ 2 β 3 ′ 3 ] [ g ⃗ 1 g ⃗ 2 g ⃗ 3 ] \begin{bmatrix}\vec{g}^{1'} \\\\ \vec{g}^{2'} \\\\ \vec{g}^{3'}\end{bmatrix}= \begin{bmatrix} \beta^{1}_{1'} & \beta^{1}_{2'} & \beta^{1}_{3'} \\\\ \beta^{2}_{1'} & \beta^{2}_{2'} & \beta^{2}_{3'} \\\\ \beta^{3}_{1'} & \beta^{3}_{2'} & \beta^{3}_{3'} \end{bmatrix}^{-1} \begin{bmatrix}\vec{g}^{1} \\\\ \vec{g}^{2} \\\\ \vec{g}^{3}\end{bmatrix}= \begin{bmatrix} \beta^{1}_{1'} & \beta^{2}_{1'} & \beta^{3}_{1'} \\\\ \beta^{1}_{2'} & \beta^{2}_{2'} & \beta^{3}_{2'} \\\\ \beta^{1}_{3'} & \beta^{2}_{3'} & \beta^{3}_{3'} \end{bmatrix} \begin{bmatrix}\vec{g}^{1} \\\\ \vec{g}^{2} \\\\ \vec{g}^{3}\end{bmatrix} g 1g 2g 3 = β11β12β13β21β22β23β31β32β33 1 g 1g 2g 3 = β11β21β31β12β22β32β13β23β33 g 1g 2g 3
{ g ⃗ 1 ′ = β 1 ′ 1 g ⃗ 1 + β 1 ′ 2 g ⃗ 2 + β 1 ′ 3 g ⃗ 3   g ⃗ 2 ′ = β 2 ′ 1 g ⃗ 1 + β 2 ′ 2 g ⃗ 2 + β 2 ′ 3 g ⃗ 3   g ⃗ 3 ′ = β 3 ′ 1 g ⃗ 1 + β 3 ′ 2 g ⃗ 2 + β 3 ′ 3 g ⃗ 3 \begin{cases} \vec{g}^{1'}=\beta^{1}_{1'}\vec{g}^{1} + \beta^{2}_{1'}\vec{g}^{2} + \beta^{3}_{1'}\vec{g}^{3} \\\ \\ \vec{g}^{2'}=\beta^{1}_{2'}\vec{g}^{1} + \beta^{2}_{2'}\vec{g}^{2} + \beta^{3}_{2'}\vec{g}^{3} \\\ \\ \vec{g}^{3'}=\beta^{1}_{3'}\vec{g}^{1} + \beta^{2}_{3'}\vec{g}^{2} + \beta^{3}_{3'}\vec{g}^{3} \end{cases} g 1=β11g 1+β12g 2+β13g 3 g 2=β21g 1+β22g 2+β23g 3 g 3=β31g 1+β32g 2+β33g 3根据这点可知:使得对称张量协变分量为零的新坐标系的逆变基 { g ⃗ 1 ′ , g ⃗ 2 ′ , g ⃗ 3 ′ } \{\vec{g}^{1'},\vec{g}^{2'},\vec{g}^{3'}\} {g 1g 2g 3}也是标准正交基,因为:
  g ⃗ i ′ ∙ g ⃗ j ′ = ( β i ′ 1 g ⃗ 1 + β i ′ 2 g ⃗ 2 + β i ′ 3 g ⃗ 3 ) ∙ ( β j ′ 1 g ⃗ 1 + β j ′ 2 g ⃗ 2 + β j ′ 3 g ⃗ 3 )   = [ β i ′ 1 β i ′ 2 β i ′ 3 ] [ g ⃗ 1 ∙ g ⃗ 1 g ⃗ 1 ∙ g ⃗ 2 g ⃗ 1 ∙ g ⃗ 3 g ⃗ 2 ∙ g ⃗ 1 g ⃗ 2 ∙ g ⃗ 2 g ⃗ 2 ∙ g ⃗ 3 g ⃗ 3 ∙ g ⃗ 1 g ⃗ 3 ∙ g ⃗ 2 g ⃗ 3 ∙ g ⃗ 3 ] [ β j ′ 1 β j ′ 2 β j ′ 3 ]   = [ β i ′ 1 β i ′ 2 β i ′ 3 ] [ β j ′ 1 β j ′ 2 β j ′ 3 ]   = { 0 ( i ′ = j ′ ) 1 ( i ′ ≠ j ′ ) ( i ′ , j ′ = 1 ′ , 2 ′ , 3 ′ ) \begin{aligned} &\quad\ \vec{g}^{i'}\bullet\vec{g}^{j'}= (\beta^{1}_{i'}\vec{g}^{1} + \beta^{2}_{i'}\vec{g}^{2} + \beta^{3}_{i'}\vec{g}^{3})\bullet(\beta^{1}_{j'}\vec{g}^{1} + \beta^{2}_{j'}\vec{g}^{2} + \beta^{3}_{j'}\vec{g}^{3}) \\\ \\ &=\begin{bmatrix} \beta^{1}_{i'} & \beta^{2}_{i'} & \beta^{3}_{i'} \end{bmatrix} \begin{bmatrix} \vec{g}^1\bullet\vec{g}^1 & \vec{g}^1\bullet\vec{g}^2 & \vec{g}^1\bullet\vec{g}^3 \\\\ \vec{g}^2\bullet\vec{g}^1 & \vec{g}^2\bullet\vec{g}^2 & \vec{g}^2\bullet\vec{g}^3 \\\\ \vec{g}^3\bullet\vec{g}^1 & \vec{g}^3\bullet\vec{g}^2 & \vec{g}^3\bullet\vec{g}^3 \end{bmatrix} \begin{bmatrix} \beta^{1}_{j'} \\\\ \beta^{2}_{j'} \\\\ \beta^{3}_{j'} \end{bmatrix}\\\ \\ &=\begin{bmatrix} \beta^{1}_{i'} & \beta^{2}_{i'} & \beta^{3}_{i'} \end{bmatrix} \begin{bmatrix} \beta^{1}_{j'} \\\\ \beta^{2}_{j'} \\\\ \beta^{3}_{j'} \end{bmatrix}\\\ \\ &=\begin{cases}0\quad(i'=j')\\1\quad(i'\ne j')\end{cases} \qquad(i',j'=1',2',3') \end{aligned}     g ig j=(βi1g 1+βi2g 2+βi3g 3)(βj1g 1+βj2g 2+βj3g 3)=[βi1βi2βi3] g 1g 1g 2g 1g 3g 1g 1g 2g 2g 2g 3g 2g 1g 3g 2g 3g 3g 3 βj1βj2βj3 =[βi1βi2βi3] βj1βj2βj3 ={0(i=j)1(i=j)(i,j=1,2,3)那么,新坐标系中协变基与逆变基重合,即
g ⃗ i = g ⃗ i = e ⃗ i \vec{g}^{i}=\vec{g}_{i}=\vec{e}_i g i=g i=e i各类张量分量分别对应相等,即
[ N 1 ] = [ N 2 ] = [ N 3 ] = [ N 4 ] [N_1]=[N_2]=[N_3]=[N_4] [N1]=[N2]=[N3]=[N4]从上述讨论可知:对于实对称二阶张量,必定存在某坐标系(某组标准正交基)使得该实对称张量在该坐标系展开有如下形式:
N = λ 1 e ⃗ 1 e ⃗ 1 + λ 2 e ⃗ 2 e ⃗ 2 + λ 3 e ⃗ 3 e ⃗ 3 \bold N=\lambda_1\vec{e}_1\vec{e}_1+\lambda_2\vec{e}_2\vec{e}_2+\lambda_3\vec{e}_3\vec{e}_3 N=λ1e 1e 1+λ2e 2e 2+λ3e 3e 3将上述形式称作实对称二阶张量的标准形 λ 1 、 λ 2 、 λ 3 \lambda_1、\lambda_2、\lambda_3 λ1λ2λ3称作实对称二阶张量的主分量,标准正交基 e ⃗ 1 、 e ⃗ 2 、 e ⃗ 3 \vec{e}_1、\vec{e}_2、\vec{e}_3 e 1e 2e 3称作实对称二阶张量的主(轴)方向,对应的坐标系称作实对称二阶张量的主坐标系。进一步,注意到
N ∙ e ⃗ i = ( λ 1 e ⃗ 1 e ⃗ 1 + λ 2 e ⃗ 2 e ⃗ 2 + λ 3 e ⃗ 3 e ⃗ 3 ) ∙ e ⃗ i = λ i e ⃗ i ( i = 1 , 2 , 3 ) \bold{N}\bullet\vec{e}_i= (\lambda_1\vec{e}_1\vec{e}_1+\lambda_2\vec{e}_2\vec{e}_2+\lambda_3\vec{e}_3\vec{e}_3)\bullet\vec{e}_i =\lambda_i\vec{e}_i \quad(i=1,2,3) Ne i=(λ1e 1e 1+λ2e 2e 2+λ3e 3e 3)e i=λie i(i=1,2,3)这意味着,实对称二阶张量的主方向由其特征向量构成,主分量为其特征值。因为主方向是柱坐标系的基,那么主方向间是线性无关的,换而言之对于实对称张量必定存在三个线性无关的特征向量,又或者说实对称张量的几何重数等于代数重数


当实对称张量的特征方程有重根时,主方向显然是不唯一的,特别地,当实对称张量有三重特征值时,该张量在空间中的任何标准正交基上进行展开,都将得到其对角标准形。我们将这种具有三重特征值(主分量相同)的实对称张量称作球形张量,记作 P \bold P P。根据定义,度量张量为球形张量,且有:
P 1 = P 2 = P 3 = 1 3 C 1 P ⟺ P = 1 3 C 1 P G P_1=P_2=P_3=\frac{1}{3} \mathscr{C}^P_1 \Longleftrightarrow \bold P=\frac{1}{3} \mathscr{C}^P_1 \bold G P1=P2=P3=31C1PP=31C1PG

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值