数学生物学-3-固定点、稳定性和蛛网图(Fixed Points, Stability, and Cobwebbing)

在前一篇博客中,我们研究了一些离散时间模型的例子。特别是,我们推导出了离散逻辑方程的重要例子。

数学生物学-2-离散时间模型(Discrete Time Models)-CSDN博客


在本篇文章中,我们将考虑离散时间模型的一般形式(在数学中也称为“离散动态系统”)。我们将介绍确定固定点(未来时间步长不变的人口规模(x)值)以及这些固定点的稳定性的方法。

固定点和蛛网图(Cobwebbing)

固定点和蛛网图(Cobwebbing)是研究离散时间模型中非常重要的概念,它们有助于我们理解系统随时间的动态行为。在一般离散时间模型中,我们考虑形如:

的方程,其中 f(x)是给定的实函数,x0​ 是初始状态。该模型的轨道是由一系列点组成的序列,这些点按照

 

的形式生成,从 n=0开始。

定义:

(1)平衡态或固定点是指满足:

的任何 x。换句话说,固定点是函数 f(x) 图像与直线y=x 的交点。

(2)如果一个轨道从接近固定点 x的点开始,并且始终保持接近 x,那么这个平衡态被认为是稳定的。如果轨道最终会远离 x,则该固定点被认为是不稳定的。通常,如果 x是稳定的,那么这样的轨道会趋向于 x;如果 x是不稳定的,轨道会从 x 的至少一侧远离。

(3)蛛网图是一种图形技术,用于在 f(x) 的图像上可视化轨道,以确定给定的固定点是稳定还是不稳定。这种方法涉及绘制从初始点开始的一系列点,并追踪这些点如何随时间变化而移动。

例1:简单离散逻辑模型

这个例子描述了一个简单的离散逻辑模型,其形式为:

其中,a是模型的一个参数,xn是第 n代的种群大小。

首先,通过设定 f(x)=x,我们得到:

然后,将 f(x)设置为 x 来找到平衡状态或不动点:

这可以解出两个不动点:

我们使用Mathematica可视化:

在图中增加蛛网过程显示了x = 0.6处固定点的稳定性。该过程是通过在x轴上的某点画一条垂直线开始,垂直画到f(x)曲线。然后水平继续画线到对角线(f(x) = x)。重复这个过程,直到清楚地看到线条是否接近固定点(两条曲线相交的地方)。在这里可以看到蛛网线从x = 0处的不稳定固定点移开,并朝向x = 0.6处的稳定固定点。实际上,还应该从x轴上大于0.6的点绘制蛛网线。

线性稳定性分析

线性稳定性分析是一种通过微积分来测试系统稳定性的方法,它适用于离散时间方程,如形如

的迭代方程,其中 f(x)是一个光滑的可微函数。该分析的核心在于考察函数 f(x) 在其不动点 x^ 处的导数 f′(x^)。

根据 f′(x^)f′(x^) 的值,可以判断不动点 x^x^ 的稳定性:

  1. 如果 ,即,那么不动点 是稳定的。这意味着系统的微小扰动会随时间衰减,系统最终会回到这个不动点。

  2. 如果,即,那么不动点是不稳定的。在这种情况下,系统的小扰动会随时间放大,导致系统偏离这个不动点。

  3. 如果,即,线性稳定性分析无法得出结论。这种情况下,需要使用其他方法,如蛛网图(cobwebbing),来确定不动点的稳定性。

 

例2:离散逻辑方程

我们考虑一个离散逻辑方程:

,求解导数可得:

因此第一个是不稳定的,第二个是稳定的,我们可以使用mathematica可视化得到:

总结

在这一篇博客中,我们描述了如何计算一般离散时间模型的不动点。接下来,我们考虑了一种方法,使用蛛网法的图形化方法来确定这些不动点是稳定还是不稳定。基于微积分中寻找模型函数导数的方法,我们推导出了一种更具分析性的评估不动点稳定性的方法,即线性稳定性分析。我们给出了两个使用软件Mathematica寻找不动点并应用线性稳定性分析的例子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tRNA做科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值