智能车摄像头算法——车库(识别斑马线)

车库分为出库和第一圈处理斑马线还有第二圈入库

出库

第一种方法比较简单,适合小白。出库,一个比较明显的特征就是比赛的开始,你可以用按键来开始打脚,配合陀螺仪积分到一定值时(也就是出库到直道上)正常巡线循迹。

第二种方法

首先从巡线方面需要重新寻(从最下面开始扫线,屏蔽斑马线,可以得到大约这样黑色的线(相册

里面没找到图片,凑合看哈,懂意思就行)

红色的是扫不到的,这种扫线方法跟八临域一个意思。这样我们就可以直接找到左右下拐点,然后开始拉线,正常循迹出库即可了。

第一圈 屏蔽斑马线,正常行驶

小车第一圈经过斑马线的情况下,不做处理,一般都会抖动的,所以我们要处理这个现象。

车库的识别跟环岛第一阶段特别像,1.一边是直线,一边丢线 2.斑马线

斑马线跟左边上下拐点是有一定的空隙的,所以他是会检测到丢线的。下面这段代码是检测斑马线的。大概意思就是,取几行然后从左到右 扫描黑白跳变点的次数,扫到第一个点(例如白点),我们记录下这个点,然后继续扫下一个点,拿这个点跟下一个点比较,如果颜色相同则跳过,如果不同则计数+1.然后把这个点变为作为比较点,继续扫描,扫到结束。然后如果计数大于一定的值,那基本就是斑马线,因为这个特征点非常明显,除了上坡道的时候乱看,其他地方应该不会有误判,这就是斑马线识别。

	 for(uint8 hang = 20;hang<35;hang++)
	 {
		 garage_count= 0 ;
		 for(uint8 lie = 10;lie<100;lie++)
		  {
				if(Pixle[hang][lie]==white)
				{
					white_black=1;
				}
				else
        {
          white_black=0;  
        }

				if(white_black!=black_white)
				{
				  black_white = white_black;
					garage_count++;
				}
				if(garage_count>11)
			  {
				region++;					
			  }			
			}
      if(region>2)
			{
				garageout_flag=1;		
                break;		
			}				
		}	

 识别完,就可以处理了,老样子找到上下两个拐点,补线就可以了。

有的人说扫线会扫到斑马线,那就改变前瞻的控制行,或者直道够长的情况下锁舵机就行(个人补推荐)。

第二圈 入库

第二圈识别的方法和第一圈一样,我就不再说了。

入库的时候一样拉上拐点补线就行(扫线不要扫到斑马线哦,斑马线只进行判断)。

停车识别 第一种可以靠陀螺仪积分停车。

第二种 依靠识别停车

           

 

大概是这个样子,待看到右下角空白区域快消失的时候(类似于不丢线)或者右边线最小值大于莫个值的时候进行停车判断。

智能车扫线(也称为路径规划或寻路)是指利用计算机算法让车辆在给定的地图上找到从起点到终点的最佳路径。在Python中,这个过程通常涉及到以下几个步骤: 1. **环境模型**:建立车辆行驶的世界模型,可能包括二维地图、障碍物分布、车道线等。 2. **路径规划算法**: - **A*搜索**:这是一种启发式搜索算法,用于寻找两点之间的最短路径,常用于实时路径规划。 - **Dijkstra算法**:适用于没有优先级要求的情况,计算所有节点到起始点的最短距离。 - **RRT (Rapidly-exploring Random Trees)**:随机树算法,适合高维度空间中的路径搜索。 3. **传感器模拟**:使用Python库(如`pygame`或`numpy`)模拟传感器数据,如激光雷达扫描结果。 4. **决策制定**:基于路径信息和传感器数据,选择下一个动作,比如转向角度、速度调整。 5. **控制执行**:如果车辆是物理模型,可能还需要考虑PID控制器来控制电机或伺服机构。 6. **仿真与调试**:使用Python的可视化库(如`matplotlib`、`gym`等)进行模拟实验,观察并优化算法性能。 要开始编写这样的项目,你需要对Python编程有扎实的基础,熟悉相关的数学原理(特别是图论),以及对机器学习和控制理论的基本理解。以下是一个简化的框架示例: ```python import numpy as np from heapq import heappush, heappop # 假设你有一个地图表示为二维数组,0表示可通行区域 def a_star_search(start, goal, map_data): # 实现A*搜索算法的具体逻辑 pass # 模拟传感器数据 def simulate_sensors(map_data): # 使用激光雷达数据生成函数 return ... # 决策制定和控制 def make_decision(path_plan, sensor_data): # 根据路径计划和传感器反馈调整方向 next_move = ... return next_move # 主循环 while True: # 获取传感器数据 sensor_data = simulate_sensors() # 计划路径 path_plan = a_star_search(current_position, target_position, map_data) # 制定并执行行动 move = make_decision(path_plan, sensor_data) execute(move) ``` 如果你打算实际开发一个智能车项目,请确保先了解这些基本概念,并根据具体需求进行适当的修改和扩展。接下来,你可能会想了解哪些具体的问题?
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

温水很好喝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值