yolo模型效果评估

本文详细描述了使用Yolov8进行训练时产生的文件结构,包括权重文件、参数配置、混淆矩阵及其解释,以及精度、召回率等性能指标如P-R曲线和损失函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如图所示,训练后能够在终端看到你最好的权重在哪个目录

使用yolov8进行训练一般会产生如下文件:

其中,weights文件夹内会存放一个最好的权重文件和最后一次的权重文件

        args.yaml: 保存此次训练的相关参数

        confusion_matrix.png: 混淆矩阵是对分类问题预测结果的总结,它通常包括以下内容:

               TP(True Positive): 将正类预测为正类数 即正确预测,真实为0,预测也为0 

                TN (True Negative):将负类预测为负类数,即正确预测,真实为1,预测也为1
                FN (False Negative):将正类预测为负类 即错误预测,真实为0,预测为1
                FP(False Positive):将负类预测为正类数 即错误预测, 真

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值