【机器学习】评价指标 - 混淆矩阵confusion matrix, 准确率,召回率

混淆矩阵

.预测正确(接受)预测错误(拒绝)
TP T P TN T N (第一类分类错误,去真) P P
FP(第二类分类错误,存伪) FN F N N N

列表示:实际属性
行表示:预测值

  • FP
    第一类分类错误

    • TN T N
      第二类分类错误

    • FP rate F P   r a t e

      FP Rate=FPN=FPTN+FP F P   R a t e = F P N = F P T N + F P

    • Specificity S p e c i f i c i t y

      Specificity=1FP Rate=TNN=TNFN+FP S p e c i f i c i t y = 1 − F P   R a t e = T N N = T N F N + F P

    • Recall R e c a l l


      Recall=TPP=TPTP+TN R e c a l l = T P P = T P T P + T N

    • Precision P r e c i s i o n

      Precision=TPTP+FP P r e c i s i o n = T P T P + F P

    • Accuracy A c c u r a c y

    • Accuracy=TP+FNP+N A c c u r a c y = T P + F N P + N

      • Fscore F − s c o r e
        FScore=Precision×Recall F − S c o r e = P r e c i s i o n × R e c a l l

      ROC曲线 AUC曲线

      以上这些都属于静态的指标,当正负样本不平衡时它会存在着严重的问题。极端情况下比如正负样本比例为1:99(这在有些领域并不少见),那么一个基准分类器只要把所有样本都判为负,它就拥有了99%的精确度,但这时的评价指标是不具有参考价值的。另外就是,现代分类器很多都不是简单地给出一个0或1的分类判定,而是给出一个分类的倾向程度,比如贝叶斯分类器输出的分类概率。对于这些分类器,当你取不同阈值,就可以得到不同的分类结果及分类器评价指标,依此人们又发明出来ROC曲线以及AUC(曲线包围面积)指标来衡量分类器的总体可信度。

      可视化解释

      • 图表示

      • 计算Precision 的点

      Precision=1111+10 P r e c i s i o n = 分 类 1 中 1 的 数 量 分 类 1 中 1 的 数 量 + 分 类 1 中 0 的 数 量

      • 计算Recall的点

      Recall=1111+01 R e c a l l = 分 类 1 中 1 的 数 量 分 类 1 中 1 的 数 量 + 分 类 0 中 1 的 数 量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值