常用基础知识2

数列

等差数列

首项为 a 1 a_{1} a1,公差d ( d ≠ 0 ) (d\ne0) (d=0)

通项公式: a n = a 1 + ( n − 1 ) d a_{n}=a_{1}+(n-1)d an=a1+(n1)d

S n = a 1 n + n − 1 2 d = n 2 ( a 1 + a n ) S_{n}=a_{1}n+\frac{n-1}{2}d=\frac{n}{2}(a_{1}+a_{n}) Sn=a1n+2n1d=2n(a1+an)

∑ 1 n = n ( n + 1 ) 2 \sum_{1}^{n}=\frac{n(n+1)}{2} 1n=2n(n+1)

等比数列

首项 a 1 a_{1} a1,公比为 r ( r ≠ 0 ) r(r\ne0) r(r=0)

通项公式 a n = a 1 q n − 1 a_{n}=a_{1}q^{n-1} an=a1qn1

前 n 项的和 S n = { n a 1 , q = 1 , a 1 ( 1 − q n ) 1 − q , r ≠ 1. 前 n 项的和 S_{n}=\left\{\begin{array}{ll}n a_{1}, & q=1, \\ \frac{a_{1}\left(1-q^{n}\right)}{1-q}, & r \neq 1 .\end{array}\right. n项的和Sn={na1,1qa1(1qn),q=1,r=1.

常用公式

1 + r + r 2 + ⋯ + r n − 1 = 1 − r n 1 − r ( r ≠ 1 ) 1+r+r^{2}+\cdots+r^{n-1}=\frac{1-r^{n}}{1-r}(r \neq 1) 1+r+r2++rn1=1r1rn(r=1)
∑ k = 1 n k = 1 + 2 + 3 + ⋯ + n = n ( n + 1 ) 2 \sum_{k=1}^{n} k=1+2+3+\cdots+n=\frac{n(n+1)}{2} k=1nk=1+2+3++n=2n(n+1)

∑ k = 1 n k 2 = 1 2 + 2 2 + 3 2 + ⋯ + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum_{k=1}^{n} k^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} k=1nk2=12+22+32++n2=6n(n+1)(2n+1)

裂项相消

∑ i = 1 n 1 k ( k + 1 ) = 1 1 × 2 + 1 2 × 3 + 1 3 × 4 + ⋯ + 1 n ( n + 1 ) = n n + 1 \sum_{i=1}^{n} \frac{1}{k(k+1)}=\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1} i=1nk(k+1)1=1×21+2×31+3×41++n(n+1)1=n+1n

三角函数

特殊值

在这里插入图片描述

诱导公式

img

倍角公式

sin ⁡ 2 α = 2 sin ⁡ a cos ⁡ α , cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 1 − 2 sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 , sin ⁡ 3 α = − 4 sin ⁡ 3 α + 3 sin ⁡ α , cos ⁡ 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α , tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α , cot ⁡ 2 α = cot ⁡ 2 α − 1 2 cot ⁡ α . \begin{array}{l} \sin 2 \alpha=2 \sin a \cos \alpha, \quad \cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha=1-2 \sin ^{2} \alpha=2 \cos ^{2} \alpha-1, \\ \sin 3 \alpha=-4 \sin ^{3} \alpha+3 \sin \alpha, \quad \cos 3 \alpha=4 \cos ^{3} \alpha-3 \cos \alpha, \\ \tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}, \quad \cot 2 \alpha=\frac{\cot ^{2} \alpha-1}{2 \cot \alpha} . \end{array} sin2α=2sinacosα,cos2α=cos2αsin2α=12sin2α=2cos2α1,sin3α=4sin3α+3sinα,cos3α=4cos3α3cosα,tan2α=1tan2α2tanα,cot2α=2cotαcot2α1.

半角公式

sin ⁡ 2 α 2 = 1 2 ( 1 − cos ⁡ α ) , cos ⁡ 2 α 2 = 1 2 ( 1 + cos ⁡ α ) ,  (降幂公式)  sin ⁡ a 2 = ± 1 − cos ⁡ a 2 , cos ⁡ a 2 = ± 1 + cos ⁡ a 2 , tan ⁡ α 2 = 1 − cos ⁡ α sin ⁡ α = sin ⁡ α 1 + cos ⁡ α = ± 1 − cos ⁡ α 1 + cos ⁡ α , cot ⁡ a 2 = sin ⁡ α 1 − cos ⁡ α = 1 + cos ⁡ α sin ⁡ α = ± 1 + cos ⁡ α 1 − cos ⁡ α . \begin{array}{l} \sin ^{2} \frac{\alpha}{2}=\frac{1}{2}(1-\cos \alpha), \quad \cos ^{2} \frac{\alpha}{2}=\frac{1}{2}(1+\cos \alpha), \text { (降幂公式) } \\ \sin \frac{a}{2}=\pm \sqrt{\frac{1-\cos a}{2}}, \cos \frac{a}{2}=\pm \sqrt{\frac{1+\cos a}{2}}, \\ \tan \frac{\alpha}{2}=\frac{1-\cos \alpha}{\sin \alpha}=\frac{\sin \alpha}{1+\cos \alpha}=\pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}, \\ \cot \frac{a}{2}=\frac{\sin \alpha}{1-\cos \alpha}=\frac{1+\cos \alpha}{\sin \alpha}=\pm \sqrt{\frac{1+\cos \alpha}{1-\cos \alpha}} . \\ \end{array} sin22α=21(1cosα),cos22α=21(1+cosα), (降幂公式sin2a=±21cosa ,cos2a=±21+cosa ,tan2α=sinα1cosα=1+cosαsinα=±1+cosα1cosα ,cot2a=1cosαsinα=sinα1+cosα=±1cosα1+cosα .

积化和差

考的概率几乎0

sin ⁡ ( α ± β ) = sin ⁡ α cos ⁡ β ± cos ⁡ α sin ⁡ β , cos ⁡ ( α ± β ) = cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β , tan ⁡ ( α ± β ) = tan ⁡ α ± tan ⁡ β 1 ∓ tan ⁡ α tan ⁡ β , cot ⁡ ( α ± β ) = cot ⁡ α cot ⁡ β ∓ 1 cot ⁡ β ± cot ⁡ α \begin{array}{l} \sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta, \quad \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta, \\ \tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}, \quad \cot (\alpha \pm \beta)=\frac{\cot \alpha \cot \beta \mp 1}{\cot \beta \pm \cot \alpha} \end{array} sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβsinαsinβ,tan(α±β)=1tanαtanβtanα±tanβ,cot(α±β)=cotβ±cotαcotαcotβ1

和差化积

sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 , sin ⁡ α − sin ⁡ β = 2 sin ⁡ α − β 2 cos ⁡ α + β 2 cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 , cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 . \begin{array}{l} \sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}, \quad \sin \alpha-\sin \beta=2 \sin \frac{\alpha-\beta}{2} \cos \frac{\alpha+\beta}{2} \\ \cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}, \quad \cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} . \end{array} sinα+sinβ=2sin2α+βcos2αβ,sinαsinβ=2sin2αβcos2α+βcosα+cosβ=2cos2α+βcos2αβ,cosαcosβ=2sin2α+βsin2αβ.

万能公式

 若  u = tan ⁡ x 2 ( − π < x < π ) , 则  sin ⁡ x = 2 u 1 + u 2 , cos ⁡ x = 1 − u 2 1 + u 2 .  \text { 若 } u=\tan \frac{x}{2}(-\pi<x<\pi) \text {, 则 } \sin x=\frac{2 u}{1+u^{2}}, \cos x=\frac{1-u^{2}}{1+u^{2}} \text {. }   u=tan2x(π<x<π) sinx=1+u22u,cosx=1+u21u2

对数

ln ⁡ x = 1 2 ln ⁡ x ln ⁡ 1 x = − ln ⁡ x ln ⁡ ( 1 + 1 x ) = ln ⁡ x + 1 x = ln ⁡ ( x + 1 ) − ln ⁡ x \begin{array}{l} \ln \sqrt{x}=\frac{1}{2} \ln x \\ \ln \frac{1}{x}=-\ln x \\ {\color{Red}\ln \left(1+\frac{1}{x}\right)=\ln \frac{x+1}{x}=\ln (x+1)-\ln x } \end{array} lnx =21lnxlnx1=lnxln(1+x1)=lnxx+1=ln(x+1)lnx

一元二次方程基础

img

因式分解公式

( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 ( a − b ) 3 = a 2 − 3 a 2 b + 3 a b 2 − b 2 a 3 − b 2 = ( a − b ) ( a 2 + a b + b 2 ) . a 2 − b 2 = ( a + b ) ( a − b ) . a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a 3 − b 2 = ( a − b ) ( a 2 + a b + b 2 ) a n − b 4 = ( a − b ) ( a n − 1 + a n − 1 b + ⋯ + a b 2 − 2 + b n − 1 ) ( n  是正整数).  \begin{array}{ll} {\color{Red} (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}\\ }\\ {\color{Red} (a-b)^{3}=a^{2}-3 a^{2} b+3 a b^{2}-b^{2}\\ }\\ a^{3}-b^{2}=(a-b)\left(a^{2}+a b+b^{2}\right) . \\ a^{2}-b^{2}=(a+b)(a-b) . & \\ {\color{Purple} a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)} \\ {\color{Purple} a^{3}-b^{2}=(a-b)\left(a^{2}+a b+b^{2}\right)} \\ a^{n}-b^{4}=(a-b)\left(a^{n-1}+a^{n-1} b+\cdots+a b^{2-2}+b^{n-1}\right)(n \text { 是正整数). } \end{array} (a+b)3=a3+3a2b+3ab2+b3(ab)3=a23a2b+3ab2b2a3b2=(ab)(a2+ab+b2).a2b2=(a+b)(ab).a3+b3=(a+b)(a2ab+b2)a3b2=(ab)(a2+ab+b2)anb4=(ab)(an1+an1b++ab22+bn1)(n 是正整数). 

二项式定理

( a + b ) n = ∑ k = 1 0 C ∗ a n − 2 b ∗ = a ∗ + n a − 1 b + n ( n − 1 ) 2 ! a − 2 b 2 + ⋯ + n ( n − 1 ) ⋯ ( n − k + 1 ) k ! a − − 2 b ∗ + ⋯ + n a b − 1 + b ∗ \begin{aligned} (a+b)^{n}=\sum_{k=1}^{0} \mathrm{C}^{*} a^{n-2} b^{*}= & a^{*}+n a^{-1} b+\frac{n(n-1)}{2 !} a^{-2} b^{2}+\cdots+ \\ & \frac{n(n-1) \cdots(n-k+1)}{k !} a^{--2} b^{*}+\cdots+n a b^{-1}+b^{*} \end{aligned} (a+b)n=k=10Can2b=a+na1b+2!n(n1)a2b2++k!n(n1)(nk+1)a−−2b++nab1+b

杨辉三角形

image-20230108152923635

阶乘

img

常用不等式

在这里插入图片描述
img

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值