线代 第二讲 矩阵

线代 第二讲 矩阵

重点

  • 矩阵的定义与运算
  • 矩阵的逆
  • 伴随矩阵
  • 初等行变换&&初等矩阵
  • 矩阵方程
  • 矩阵的秩&&等价矩阵

定义与运算

本质

表达一个系统信息

观点1

矩阵是由若干行列向量拼成

观点2

矩阵不能运算,但行列向量之间可能存在关系

→ \to 矩阵的本质——矩阵的秩

矩阵的秩:组成该矩阵线性无关量的个数

定义

 由  m × n  个数  a i j ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n )  排成的  m  行  n  列的矩形表格  \text { 由 } m \times n \text { 个数 } a_{i j}(i=1,2, \cdots, m ; j=1,2, \cdots, n) \text { 排成的 } m \text { 行 } n \text { 列的矩形表格 }   m×n 个数 aij(i=1,2,,m;j=1,2,,n) 排成的 m  n 列的矩形表格 

[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ] \left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\a_{21} & a_{22} & \cdots & a_{2 n} \\\vdots & \vdots & & \vdots \\a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right] a11a21am1a12a22am2a1na2namn

 称为一个  m × n  矩阵  \text { 称为一个 } m \times n \text { 矩阵 }  称为一个 m×n 矩阵 

方阵: m = n m=n m=n

基本运算

相等

A = B A=B A=B

同型矩阵,对应元素相同

加法

同型矩阵,对应元素相加

数乘

顾名思义,乘上一个数

因为矩阵是一个系统

SO

k A = A k = k [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ] = [ k a 11 k a 12 ⋯ k a 1 n k a 21 k a 22 ⋯ k a 2 n ⋮ ⋮ ⋮ k a m 1 k a m 2 ⋯ k a m n ] k \boldsymbol{A}=\boldsymbol{A} k=k\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\a_{21} & a_{22} & \cdots & a_{2 n} \\\vdots & \vdots & & \vdots \\a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]=\left[\begin{array}{cccc}k a_{11} & k a_{12} & \cdots & k a_{1 n} \\k a_{21} & k a_{22} & \cdots & k a_{2 n} \\\vdots & \vdots & & \vdots \\k a_{m 1} & k a_{m 2} & \cdots & k a_{m n}\end{array}\right] kA=Ak=k a11a21am1a12a22am2a1na2namn = ka11ka21kam1ka12ka22kam2ka1nka2nkamn

做行列式运算时

常考

A n × n , ∣ k A ∣ = k n ⋅ ∣ A ∣ ,  A_{n \times n},|k A|=k^{n} \cdot|A| \text {, } An×n,kA=knA

 当用  n  阶方阵  A  计算行列式时, 记成  ∣ A ∣ \text { 当用 } n \text { 阶方阵 } \boldsymbol{A} \text { 计算行列式时, 记成 }|\boldsymbol{A}|  当用 n 阶方阵 A 计算行列式时记成 A

A ≠ O ⇒ ∣ A ∣ ≠ 0 \boldsymbol{A} \neq \boldsymbol{O} \Rightarrow|\boldsymbol{A}| \neq 0 A=OA=0

A ≠ B ∤ A ∣ ≠ ∣ B ∣ \boldsymbol{A} \neq \boldsymbol{B} \not|\boldsymbol{A}| \neq|\boldsymbol{B}| A=BA=B

乘法

A m × s B s × n = C m × n A_{m\times s}B_{s\times n}=C_{m\times n} Am×sBs×n=Cm×n

C 11 = ∑ s = 1 s A 1 × s B s × 1 C_{11}=\sum_{s=1}^{s} A_{1\times s}B_{s\times 1} C11=s=1sA1×sBs×1

即新矩阵第一个元素是指: A A A矩阵的第一行与 B B B矩阵的第一列对应相乘再求和

A B ≠ B A AB\ne BA AB=BA

A B = O ⇒ A = O  或  B = O .  A B=O \Rightarrow A=O \text { 或 } B=O \text {. } AB=OA=O  B=O

A B = A C ⇒ A ( B − C ) = O , 此时即使有  A ≠ O ,  一般也得不出  B = C A B=A C \Rightarrow A(B-C)=O \text {, 此时即使有 } A \neq O, \text { 一般也得不出 } B=C AB=ACA(BC)=O此时即使有 A=O, 一般也得不出 B=C

转置

将矩阵的行列互换,记为$\boldsymbol{A}^{\mathrm{T}} $

向量的内积与正交

内积

 设  α = [ a 1 , a 2 , ⋯   , a n ] T , β = [ b 1 , b 2 , ⋯   , b n ] T ,则称  \text { 设 } \boldsymbol{\alpha}=\left[a_{1}, a_{2}, \cdots, a_{n}\right]^{\mathrm{T}}, \boldsymbol{\beta}=\left[b_{1}, b_{2}, \cdots, b_{n}\right]^{\mathrm{T}} \text {,则称 }   α=[a1,a2,,an]T,β=[b1,b2,,bn]T,则称 

α T β = ∑ i = 1 n a i b i = a 1 b 1 + a 2 b 2 + ⋯ + a n b n \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta}=\sum_{i=1}^{n} a_{i} b_{i}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} αTβ=i=1naibi=a1b1+a2b2++anbn

为向量 α , β 的内积 , 记作 ( α , β ) , 即 ( α , β ) = α T β 为向量 \boldsymbol{\alpha}, \boldsymbol{\beta} 的内积, 记作 (\boldsymbol{\alpha}, \boldsymbol{\beta}) , 即 (\boldsymbol{\alpha}, \boldsymbol{\beta})=\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta} 为向量α,β的内积,记作(α,β),(α,β)=αTβ

正交

 当  α T β = 0  时,称向量  α , β  是正交向量  \text { 当 } \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta}=0 \text { 时,称向量 } \boldsymbol{\alpha}, \boldsymbol{\beta} \text { 是正交向量 }   αTβ=0 ,称向量 α,β 是正交向量 

∥ α ∥ = ∑ i = 1 n a i 2  称为向量  α  的模 (长度)  \|\boldsymbol{\alpha}\|=\sqrt{\sum_{i=1}^{n} a_{i}^{2}} \text { 称为向量 } \boldsymbol{\alpha} \text { 的模 (长度) } α=i=1nai2  称为向量 α 的模 (长度

向量每个元素先平方再求和,再开方

∥ α ∥ = 1  时,称  α  为单位向量  \|\boldsymbol{\alpha}\|=1 \text { 时,称 } \boldsymbol{\alpha} \text { 为单位向量 } α=1 , α 为单位向量 

施密特正交化过程

 线性无关向量组  α 1 , α 2  的标准正交化 (又称正交规范化) 公式为  \text { 线性无关向量组 } \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2} \text { 的标准正交化 (又称正交规范化) 公式为 }  线性无关向量组 α1,α2 的标准正交化 (又称正交规范化公式为 

β 1 = α 1 , β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 \begin{array}{l}\boldsymbol{\beta}_{1}=\boldsymbol{\alpha}_{1}, \\\boldsymbol{\beta}_{2}=\boldsymbol{\alpha}_{2}-\frac{\left(\boldsymbol{\alpha}_{2}, \boldsymbol{\beta}_{1}\right)}{\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{1}\right)} \boldsymbol{\beta}_{1}\end{array} β1=α1,β2=α2(β1,β1)(α2,β1)β1

 得到的  β 1 , β 2  是正交向量组  \text { 得到的 } \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2} \text { 是正交向量组 }  得到的 β1,β2 是正交向量组 

 将  β 1 , β 2  单位化, 得  \text { 将 } \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2} \text { 单位化, 得 }   β1,β2 单位化 

η 1 = β 1 ∥ β 1 ∥ , η 2 = β 2 ∥ β 2 ∥ \boldsymbol{\eta}_{1}=\frac{\boldsymbol{\beta}_{1}}{\left\|\boldsymbol{\beta}_{1}\right\|}, \quad \boldsymbol{\eta}_{2}=\frac{\boldsymbol{\beta}_{2}}{\left\|\boldsymbol{\beta}_{2}\right\|} η1=β1β1,η2=β2β2

 则  η 1 , η 2  是标准正交向量组  \text { 则 } \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2} \text { 是标准正交向量组 }   η1,η2 是标准正交向量组 

矩阵的幂

A  是一个  n  阶方阵,  A m = A A ⋯ A ⏞ m  称为  A  的  m  次幂  \boldsymbol{A} \text { 是一个 } n \text { 阶方阵, } \boldsymbol{A}^{m}=\overbrace{\boldsymbol{A} \boldsymbol{A} \cdots \boldsymbol{A}}^{m} \text { 称为 } \boldsymbol{A} \text { 的 } m \text { 次幂 } A 是一个 n 阶方阵Am=AAA m 称为 A  m 次幂 

方阵乘积的行列式

A , B  是同阶方阵, 则  ∣ A B ∣ = ∣ A ∣ ∣ B ∣ \boldsymbol{A}, \boldsymbol{B} \text { 是同阶方阵, 则 }|\boldsymbol{A B}|=|\boldsymbol{A}||\boldsymbol{B}| A,B 是同阶方阵 AB=A∣∣B

( A + B ) 2 = ( A + B ) ( A + B ) = A 2 + A B + B A + B 2 ≠ A 2 + 2 A B + B 2 (\boldsymbol{A}+\boldsymbol{B})^{2}=(\boldsymbol{A}+\boldsymbol{B})(\boldsymbol{A}+\boldsymbol{B})=\boldsymbol{A}^{2}+\boldsymbol{A} \boldsymbol{B}+\boldsymbol{B} \boldsymbol{A}+\boldsymbol{B}^{2} \neq \boldsymbol{A}^{2}+2 \boldsymbol{A} \boldsymbol{B}+\boldsymbol{B}^{2} (A+B)2=(A+B)(A+B)=A2+AB+BA+B2=A2+2AB+B2

重要矩阵

零矩阵:每个元素均为0,记为0

单位矩阵:主对角线元素均为1,其余为0的 n n n阶方阵,记作 E E E

数量矩阵:数量 k k k与矩阵相乘

对角矩阵:主对角线外元素均为0

三角矩阵:一角均为0

对称矩阵:如 A 12 = A 21 A_{12}=A_{21} A12=A21,对应位置相等,即 A T = A \boldsymbol{A}^{\mathrm{T}}=\boldsymbol{A} AT=A

反对称矩阵: A T = − A \boldsymbol{A}^{\mathrm{T}}=-\boldsymbol{A} AT=A

正交矩阵: A T A = E \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}=\boldsymbol{E} ATA=E

分块矩阵: 如 A 按行分块 : A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋯ ⋯ ⋮ a m 1 a m 2 ⋯ a n n ] = [ A 1 A 2 ⋮ A m ] , 其中 , A i = [ a i 1 , a i 2 , ⋯   , a i n ] ( i = 1 , 2 , ⋯   , m ) 是 A 的一个子块 . 如 A 按行分块:\boldsymbol{A}=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\\hdashline a_{21} & a_{22} & \cdots & a_{2 n} \\\hdashline \vdots & \vdots & & \vdots \\\hdashline & \cdots & \cdots & \vdots \\a_{m 1} & a_{m 2} & \cdots & a_{n n}\end{array}\right]=\left[\begin{array}{c}\boldsymbol{A}_{1} \\\boldsymbol{A}_{2} \\\vdots \\\boldsymbol{A}_{m}\end{array}\right],其中, \boldsymbol{A}_{i}=\left[a_{i 1}, a_{i 2}, \cdots, a_{i n}\right](i=1,2, \cdots, m) 是 \boldsymbol{A} 的一个子块. A按行分块:A= a11a21am1a12a22am2a1na2nann = A1A2Am ,其中,Ai=[ai1,ai2,,ain](i=1,2,,m)A的一个子块.

分块矩阵运算时满足矩阵运算法则

 乘法:  [ A B C D ] [ X Y Z W ] = [ A X + B Z A Y + B W C X + D Z C Y + D W ] , 要可乘、可加.  \text { 乘法: }\left[\begin{array}{ll}\boldsymbol{A} & \boldsymbol{B} \\\boldsymbol{C} & \boldsymbol{D}\end{array}\right]\left[\begin{array}{cc}\boldsymbol{X} & \boldsymbol{Y} \\\boldsymbol{Z} & \boldsymbol{W}\end{array}\right]=\left[\begin{array}{cc}\boldsymbol{A X}+\boldsymbol{B Z} & \boldsymbol{A} \boldsymbol{Y}+\boldsymbol{B W} \\C X+D Z & C Y+D W\end{array}\right] \text {, 要可乘、可加. }  乘法[ACBD][XZYW]=[AX+BZCX+DZAY+BWCY+DW]要可乘、可加

乘方: [ A O O B ] n = [ A n O O B n ] \left[\begin{array}{ll}\boldsymbol{A} & \boldsymbol{O} \\\boldsymbol{O} & \boldsymbol{B}\end{array}\right]^{n}=\left[\begin{array}{cc}\boldsymbol{A}^{n} & \boldsymbol{O} \\\boldsymbol{O} & \boldsymbol{B}^{n}\end{array}\right] [AOOB]n=[AnOOBn]

矩阵的逆

定义

A , B  是  n  阶方阵,  E  是  n  阶单位矩阵, 若  A B = B A = E , 则称  A  是可逆矩阵,  \boldsymbol{A}, \boldsymbol{B} \text { 是 } n \text { 阶方阵, } \boldsymbol{E} \text { 是 } n \text { 阶单位矩阵, 若 } \boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}=\boldsymbol{E} \text {, 则称 } \boldsymbol{A} \text { 是可逆矩阵, } A,B  n 阶方阵E  n 阶单位矩阵 AB=BA=E则称 A 是可逆矩阵

并称  B  是  A  的逆矩阵  \text {并称 } \boldsymbol{B} \text { 是 } \boldsymbol{A} \text { 的逆矩阵 } 并称 B  A 的逆矩阵 ,逆矩阵是唯一的

记作 A − 1 A^{-1} A1

A  可逆的充分必要条件是  ∣ A ∣ ≠ 0 . 当  ∣ A ∣ ≠ 0  时,  A  可逆, 且  A \text { 可逆的充分必要条件是 }|\boldsymbol{A}| \neq 0 \text {. 当 }|\boldsymbol{A}| \neq 0 \text { 时, } \boldsymbol{A} \text { 可逆, 且 } A 可逆的充分必要条件是 A=0 A=0 A 可逆 

A − 1 = 1 ∣ A ∣ A ∗ \boldsymbol{A}^{-1}=\frac{1}{|\boldsymbol{A}|} \boldsymbol{A}^{*} A1=A1A

重要公式

  1. ( A − 1 ) − 1 = A \left(\boldsymbol{A}^{-1}\right)^{-1}=\boldsymbol{A} (A1)1=A
  2. ( A B ) − 1 = B − 1 A − 1 (\boldsymbol{A} \boldsymbol{B})^{-1}=\boldsymbol{B}^{-1} \boldsymbol{A}^{-1} (AB)1=B1A1
  3. ( A T ) − 1 = ( A − 1 ) T \left(\boldsymbol{A}^{\mathrm{T}}\right)^{-1}=\left(\boldsymbol{A}^{-1}\right)^{\mathrm{T}} (AT)1=(A1)T
  4. ∣ A − 1 ∣ = ∣ A ∣ − 1 \left|\boldsymbol{A}^{-1}\right|=|\boldsymbol{A}|^{-1} A1 =A1

A + B  不一定可逆,且  ( A + B ) − 1 ≠ A − 1 + B − 1 \boldsymbol{A}+\boldsymbol{B} \text { 不一定可逆,且 }(\boldsymbol{A}+\boldsymbol{B})^{-1} \neq \boldsymbol{A}^{-1}+\boldsymbol{B}^{-1} A+B 不一定可逆, (A+B)1=A1+B1

求逆矩阵

定义法

 求一个矩阵  B , 使  A B = E , 则  A  可逆, 且  A − 1 = B \text { 求一个矩阵 } \boldsymbol{B} \text {, 使 } \boldsymbol{A B}=\boldsymbol{E} \text {, 则 } \boldsymbol{A} \text { 可逆, 且 } \boldsymbol{A}^{-1}=\boldsymbol{B}  求一个矩阵 B使 AB=E A 可逆 A1=B

乘积法

 若  A = B C , 其中  \text { 若 } A=B C \text {, 其中 }   A=BC其中  B , C  均可逆, 则  A  可逆, 且  \boldsymbol{B}, \boldsymbol{C} \text { 均可逆, 则 } \boldsymbol{A} \text { 可逆, 且 } B,C 均可逆 A 可逆  A − 1 = ( B C ) − 1 = C − 1 B − 1 \boldsymbol{A}^{-1}=(\boldsymbol{B} \boldsymbol{C})^{-1}=\boldsymbol{C}^{-1} \boldsymbol{B}^{-1} A1=(BC)1=C1B1

分块矩阵

 一些简单分块矩阵的逆. 若  A , B  均是可逆方阵, 则  \text { 一些简单分块矩阵的逆. 若 } \boldsymbol{A}, \boldsymbol{B} \text { 均是可逆方阵, 则 }  一些简单分块矩阵的逆 A,B 均是可逆方阵 

[ A O O B ] − 1 = [ A − 1 O O B − 1 ] , [ O A B O ] − 1 = [ O B − 1 A − 1 O ] \left[\begin{array}{ll}\boldsymbol{A} & \boldsymbol{O} \\\boldsymbol{O} & \boldsymbol{B}\end{array}\right]^{-1}=\left[\begin{array}{cc}\boldsymbol{A}^{-1} & \boldsymbol{O} \\\boldsymbol{O} & \boldsymbol{B}^{-1}\end{array}\right], \quad\left[\begin{array}{cc}\boldsymbol{O} & \boldsymbol{A} \\\boldsymbol{B} & \boldsymbol{O}\end{array}\right]^{-1}=\left[\begin{array}{cc}\boldsymbol{O} & \boldsymbol{B}^{-1} \\\boldsymbol{A}^{-1} & \boldsymbol{O}\end{array}\right] [AOOB]1=[A1OOB1],[OBAO]1=[OA1B1O]

二阶矩阵的逆

在这里插入图片描述

伴随矩阵

 将行列式  ∣ A ∣  的  n 2  个元素的代数余子式按如下形式排成的矩阵  \text { 将行列式 }|\boldsymbol{A}| \text { 的 } n^{2} \text { 个元素的代数余子式按如下形式排成的矩阵 }  将行列式 A  n2 个元素的代数余子式按如下形式排成的矩阵 

A ∗ = [ A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ] \boldsymbol{A}^{*}=\left[\begin{array}{cccc}A_{11} & A_{21} & \cdots & A_{n 1} \\A_{12} & A_{22} & \cdots & A_{n 2} \\\vdots & \vdots & & \vdots \\A_{1 n} & A_{2 n} & \cdots & A_{n n}\end{array}\right] A= A11A12A1nA21A22A2nAn1An2Ann

并且 A A ∗ = A ∗ A = ∣ A ∣ E \boldsymbol{A} \boldsymbol{A}^{*}=\boldsymbol{A}^{*} \boldsymbol{A}=|\boldsymbol{A}| \boldsymbol{E} AA=AA=AE

重要公式

A ∗ = ∣ A ∣ A − 1 \boldsymbol{A}^{*}=|\boldsymbol{A}| \boldsymbol{A}^{-1} A=AA1

A = ∣ A ∣ ( A ∗ ) − 1 \boldsymbol{A}=|\boldsymbol{A}|\left(\boldsymbol{A}^{*}\right)^{-1} A=A(A)1

A − 1 = 1 ∣ A ∣ A ∗ \boldsymbol{A}^{-1}=\frac{1}{|\boldsymbol{A}|} \boldsymbol{A}^{*} A1=A1A

( A ∗ ) ∗ = ∣ A ∣ n − 2 A \left(\boldsymbol{A}^{*}\right)^{*}=|\boldsymbol{A}|^{n-2} \boldsymbol{A} (A)=An2A

初等行变换

定义

倍乘:数乘某行某列

E 2 ( k ) = [ 1 0 0 0 k 0 0 0 1 ] , E  的第 2 行(或第 2 列) 乘  k  倍, 称为倍乘初等矩阵  \boldsymbol{E}_{2}(k)=\left[\begin{array}{lll}1 & 0 & 0 \\0 & k & 0 \\0 & 0 & 1\end{array}\right], \boldsymbol{E} \text { 的第 2 行(或第 2 列) 乘 } k \text { 倍, 称为倍乘初等矩阵 } E2(k)= 1000k0001 ,E 的第 2 (或第 2  k 称为倍乘初等矩阵 

互换:互换两行或两列

E 12 = [ 0 1 0 1 0 0 0 0 1 ] , E  的第 1,2 行 (或第 1,2 列) 互换, 称为互换初等矩阵  \boldsymbol{E}_{12}=\left[\begin{array}{lll}0 & 1 & 0 \\1 & 0 & 0 \\0 & 0 & 1\end{array}\right], \boldsymbol{E} \text { 的第 1,2 行 (或第 1,2 列) 互换, 称为互换初等矩阵 } E12= 010100001 ,E 的第 1,2  (或第 1,2 互换称为互换初等矩阵 

倍加:某行倍乘加到另一行

初等矩阵:由单位矩阵经过一次变换得到的矩阵

E 31 ( k ) = [ 1 0 0 0 1 0 k 0 1 ] , E  的第  1  行的  k  倍加到第  3  行 (或第  3  列的  k  倍加到第  1  列), 称为倍加初等  \boldsymbol{E}_{31}(k)=\left[\begin{array}{lll}1 & 0 & 0 \\0 & 1 & 0 \\k & 0 & 1\end{array}\right], \boldsymbol{E} \text { 的第 } 1 \text { 行的 } k \text { 倍加到第 } 3 \text { 行 (或第 } 3 \text { 列的 } k \text { 倍加到第 } 1 \text { 列), 称为倍加初等 } E31(k)= 10k010001 ,E 的第 1 行的 k 倍加到第 3  (或第 3 列的 k 倍加到第 1 ), 称为倍加初等 

公式

E i j T = E i j , E i ⊤ ( k ) = E i ( k ) , E i j ⊤ ( k ) = E j i ( k ) E_{i j}^{T}=E_{i j},E_{i}^{\top}(k)=E_{i}(k),E_{i j}^{\top}(k)=E_{j i}(k) EijT=EijEi(k)=Ei(k)Eij(k)=Eji(k)

因为初等矩阵由单位阵变换而来

故: ∣ E i ( k ) ∣ = k ≠ 0 , ∣ E i j ∣ = − 1 ≠ 0 , ∣ E i j ( k ) ∣ = 1 ≠ 0 \left|\boldsymbol{E}_{i}(k)\right|=k \neq 0, \quad\left|\boldsymbol{E}_{i j}\right|=-1 \neq 0, \quad\left|\boldsymbol{E}_{i j}(k)\right|=1 \neq 0 Ei(k)=k=0,Eij=1=0,Eij(k)=1=0

即初等矩阵都是可逆矩阵

[ E i ( k ) ] − 1 = E i ( 1 k ) , E i j − 1 = E i j , [ E i j ( k ) ] − 1 = E i j ( − k ) \left[\boldsymbol{E}_{i}(k)\right]^{-1}=\boldsymbol{E}_{i}\left(\frac{1}{k}\right), \quad \boldsymbol{E}_{i j}^{-1}=\boldsymbol{E}_{i j}, \quad\left[\boldsymbol{E}_{i j}(k)\right]^{-1}=\boldsymbol{E}_{i j}(-k) [Ei(k)]1=Ei(k1),Eij1=Eij,[Eij(k)]1=Eij(k)

性质

求逆矩阵
化单位阵

在这里插入图片描述

作分块阵

先保证大矩阵可逆再分块

复杂部分,左乘同行,右乘同列

A = ( B 0 D C ) ⇒ A − 1 = ( B − 1 0 − C − 1 D B − 1 C − 1 ) A=\left(\begin{array}{ll}B & 0 \\D & C\end{array}\right) \Rightarrow A^{-1}=\left(\begin{array}{cc}B^{-1} & 0 \\-C^{-1} D B^{-1} & C^{-1}\end{array}\right) A=(BD0C)A1=(B1C1DB10C1)

  A = ( B D 0 C ) ⇒ A − 1 = ( B − 1 − B − 1 D C − 1 0 C − 1 ) \text { } A=\left(\begin{array}{ll}B & D \\0 & C\end{array}\right) \Rightarrow A^{-1}=\left(\begin{array}{cc}B^{-1} & -B^{-1} D C^{-1} \\0 & C^{-1}\end{array}\right)  A=(B0DC)A1=(B10B1DC1C1)

  A = ( 0 B C D ) ⇒ A − 1 = ( − C − 1 D B − 1 C − 1 B − 1 0 ) \text { } A=\left(\begin{array}{ll}0 & B \\C & D\end{array}\right) \Rightarrow A^{-1}=\left(\begin{array}{cc}-C^{-1} D B^{-1} & C^{-1} \\B^{-1} & 0\end{array}\right)  A=(0CBD)A1=(C1DB1B1C10)

A = ( D B C 0 ) ⇒ A − 1 = ( 0 C − 1 B − 1 − B − 1 D C − 1 ) A=\left(\begin{array}{ll}D & B \\C & 0\end{array}\right) \Rightarrow A^{-1}=\left(\begin{array}{cc}0 & C^{-1} \\B^{-1} & -B^{-1} D C^{-1}\end{array}\right) A=(DCB0)A1=(0B1C1B1DC1)

左行右列

在这里插入图片描述

等价矩阵

等价即秩相等

矩阵的秩

k k k阶子式不得0, k + 1 k+1 k+1子式全为0,则 r ( A ) = k r(A)=k r(A)=k

初等变换不改变秩

相关公式

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值