线代 第四讲

线性方程组

齐次是相关性问题

非齐次是表出性问题

齐次

方程组

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 m x n = 0 , ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n n x n = 0 \left\{\begin{array}{c}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0, \\a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 m} x_{n}=0, \\\cdots \cdots \\a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n n} x_{n}=0\end{array}\right. a11x1+a12x2++a1nxn=0,a21x1+a22x2++a2mxn=0,⋯⋯am1x1+am2x2++amnnxn=0

 称为  m  个方程,  n  个末知量的齐次线性方程组  \text { 称为 } m \text { 个方程, } n \text { 个末知量的齐次线性方程组 }  称为 m 个方程n 个末知量的齐次线性方程组 

向量形式为: x 1 α 1 + x 2 α 2 + ⋯ + x n α n = 0 x_{1} \boldsymbol{\alpha}_{1}+x_{2} \boldsymbol{\alpha}_{2}+\cdots+x_{n} \boldsymbol{\alpha}_{n}=\mathbf{0} x1α1+x2α2++xnαn=0

矩阵形式为: A m × n x = 0 \boldsymbol{A}_{m \times n} \boldsymbol{x}=\mathbf{0} Am×nx=0

A m × n = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ] , x = [ x 1 x 2 ⋮ x n ] \boldsymbol{A}_{m \times n}=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\a_{21} & a_{22} & \cdots & a_{2 n} \\\vdots & \vdots & & \vdots \\a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{c}x_{1} \\x_{2} \\\vdots \\x_{n}\end{array}\right] Am×n= a11a21am1a12a22am2a1na2namn ,x= x1x2xn

条件

列满秩: r ( A ) = n r(A)=n r(A)=n时, ( α 1 , α 2 , ⋯   , α n  线性无关), 方程组 (I ) 有唯一零解  \left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n}\right. \text { 线性无关), 方程组 (I ) 有唯一零解 } (α1,α2,,αn 线性无关), 方程组 (I ) 有唯一零解 

列不满秩: r ( A ) < n r(A)<n r(A)<n时, ( α 1 , α 2 , ⋯   , α n  线性相关), 方程组 (I) ) 有非零解, 且有  n − r  个线性无关解  \left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n} \text { 线性相关), 方程组 (I) ) 有非零解, 且有 } n-r\right. \text { 个线性无关解 } (α1,α2,,αn 线性相关), 方程组 (I) ) 有非零解且有 nr 个线性无关解 

无穷多解

解析

在这里插入图片描述

性质
基础解系

在这里插入图片描述

在这里插入图片描述

通解

由基础解系组成的解空间

 设  ξ 1 , ξ 2 , ⋯   , ξ n − r  是  A x = 0  的基础解系, 则  k 1 ξ 1 + k 2 ξ 2 + ⋯ + k n − , ξ n − r  是方程组  A x = 0  的通解,  \text { 设 } \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n-r} \text { 是 } \boldsymbol{A} \boldsymbol{x}=\mathbf{0} \text { 的基础解系, 则 } k_{1} \boldsymbol{\xi}_{1}+k_{2} \boldsymbol{\xi}_{2}+\cdots+k_{n-}, \boldsymbol{\xi}_{n-r} \text { 是方程组 } \boldsymbol{A} \boldsymbol{x}=\mathbf{0} \text { 的通解, }   ξ1,ξ2,,ξnr  Ax=0 的基础解系 k1ξ1+k2ξ2++kn,ξnr 是方程组 Ax=0 的通解

 其中  k 1 , k 2 , ⋯   , k n − r  是任意常数  \text { 其中 } k_{1}, k_{2}, \cdots, k_{n-r} \text { 是任意常数 }  其中 k1,k2,,knr 是任意常数 

求解方法

  1. 初等行变化为阶梯型矩阵
  2. 找出秩为 r r r的子矩阵,余下数为自由变量
  3. 按基础解系求通解
例题

求下列齐次方程组的通解

{ x 1 + x 2 − 3 x 4 − x 5 = 0 , x 1 − x 2 + 2 x 3 − x 4 = 0 , 4 x 1 − 2 x 2 + 6 x 3 + 3 x 4 − 4 x 5 = 0 , 2 x 1 + 4 x 2 − 2 x 3 + 4 x 4 − 7 x 5 = 0 \left\{\begin{array}{l}x_{1}+x_{2}-3 x_{4}-x_{5}=0, \\x_{1}-x_{2}+2 x_{3}-x_{4}=0, \\4 x_{1}-2 x_{2}+6 x_{3}+3 x_{4}-4 x_{5}=0, \\2 x_{1}+4 x_{2}-2 x_{3}+4 x_{4}-7 x_{5}=0\end{array}\right. x1+x23x4x5=0,x1x2+2x3x4=0,4x12x2+6x3+3x44x5=0,2x1+4x22x3+4x47x5=0

在这里插入图片描述

 若  A ξ 1 = 0 , A ξ 2 = 0 , 则  A ( k 1 ξ 1 + k 2 ξ 2 ) = 0 , 其中  k 1 , k 2  是任意常数.  \text { 若 } \boldsymbol{A} \boldsymbol{\xi}_{1}=\mathbf{0}, \boldsymbol{A} \boldsymbol{\xi}_{2}=\mathbf{0} \text {, 则 } \boldsymbol{A}\left(k_{1} \boldsymbol{\xi}_{1}+k_{2} \boldsymbol{\xi}_{2}\right)=\mathbf{0} \text {, 其中 } k_{1}, k_{2} \text { 是任意常数. }   Aξ1=0,Aξ2=0 A(k1ξ1+k2ξ2)=0其中 k1,k2 是任意常数

非齐次

线性方程组与向量组是一回事

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 m x n = b 2 , ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m m x n = b m , \left\{\begin{array}{c}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}, \\a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 m} x_{n}=b_{2}, \\\cdots \cdots \\a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m m} x_{n}=b_{m},\end{array}\right. a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2mxn=b2,⋯⋯am1x1+am2x2++ammxn=bm,

矩阵形式为: A m × n x = B \boldsymbol{A}_{m \times n} \boldsymbol{x}=\mathbf{B} Am×nx=B

系数矩阵: A m × n A_{m\times n} Am×n

增广矩阵: [ a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m ] \left[\begin{array}{cccc:c}a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\\vdots & \vdots & & \vdots & \vdots \\a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}\end{array}\right] a11a21am1a12a22am2a1na2namnb1b2bm

在这里插入图片描述

性质

设  η 1 , η 2 , η  是非齐次线性方程组  A x = b  的解,  ξ  是对应齐次线性方程组  A x = 0  的解  \text {设 } \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \boldsymbol{\eta} \text { 是非齐次线性方程组 } \boldsymbol{A x}=\boldsymbol{b} \text { 的解, } \boldsymbol{\xi} \text { 是对应齐次线性方程组 } \boldsymbol{A x}=\mathbf{0} \text { 的解 }  η1,η2,η 是非齐次线性方程组 Ax=b 的解ξ 是对应齐次线性方程组 Ax=0 的解 

则:

  1. η 1 − η 2  是  \boldsymbol{\eta}_{1}-\boldsymbol{\eta}_{2} \text { 是 } η1η2   A x = 0  的解  \boldsymbol{A} \boldsymbol{x}=\mathbf{0} \text { 的解 } Ax=0 的解 
  2. k ξ + η  是  A x = b  的解 k \boldsymbol{\xi}+\boldsymbol{\eta} \text { 是 } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \text { 的解} kξ+η  Ax=b 的解,即:通解+特解
例题

看清对应项系数

已知非齐次线性方程组,求解并用对应的齐次线性方程组的基础解系表示通解

{ x 1 + 5 x 2 − x 3 − x 4 = − 1 , x 1 − 2 x 2 + x 3 + 3 x 4 = 3 , 3 x 1 + 8 x 2 − x 3 + x 4 = 1 , x 1 − 9 x 2 + 3 x 3 + 7 x 4 = 7 , \left\{\begin{array}{l}x_{1}+5 x_{2}-x_{3}-x_{4}=-1, \\x_{1}-2 x_{2}+x_{3}+3 x_{4}=3, \\3 x_{1}+8 x_{2}-x_{3}+x_{4}=1, \\x_{1}-9 x_{2}+3 x_{3}+7 x_{4}=7,\end{array}\right. x1+5x2x3x4=1,x12x2+x3+3x4=3,3x1+8x2x3+x4=1,x19x2+3x3+7x4=7,

在这里插入图片描述

抽象系数矩阵

在这里插入图片描述

系数矩阵与解的关系

以系数矩阵为主题来看

  1. 齐线: α 1 x 1 + α 2 x 2 + ⋯ + α n x n = 0 \boldsymbol{\alpha}_{1} x_{1}+\boldsymbol{\alpha}_{2} x_{2}+\cdots+\boldsymbol{\alpha}_{n} x_{n}=\mathbf{0} α1x1+α2x2++αnxn=0,解即线性组合为 0 0 0向量时线性组合的系数
  2. 非齐线: α 1 x 1 + α 2 x 2 + ⋯ + α n x n = β \boldsymbol{\alpha}_{1} x_{1}+\boldsymbol{\alpha}_{2} x_{2}+\cdots+\boldsymbol{\alpha}_{n} x_{n}=\boldsymbol{\beta} α1x1+α2x2++αnxn=β  解是  β  由  α 1 , α 2 , ⋯   , α n  线性表出的表出系数  \text { 解是 } \boldsymbol{\beta} \text { 由 } \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n} \text { 线性表出的表出系数 }  解是 β  α1,α2,,αn 线性表出的表出系数 

→ \to 方程组的解即:描述列向量组中各向量之间线性关系的系数

两方程组的公共解

 齐次线性方程组  A m × n x = 0  和  B m × n x = 0  的公共解  \text { 齐次线性方程组 } \boldsymbol{A}_{m \times n} \boldsymbol{x}=\boldsymbol{0} \text { 和 } \boldsymbol{B}_{m \times n} \boldsymbol{x}=\boldsymbol{0} \text { 的公共解 }  齐次线性方程组 Am×nx=0  Bm×nx=0 的公共解 

求法

  1. 联立方程组,即联立系数矩阵,算就完了
  2. 求出 A m × , n x = 0 的通解 k 1 ξ 1 + k 2 ξ 2 + ⋯ + k , ξ n , 代人 B m × n x = 0 , 求出 k i ( i = 1 , 2 , ⋯   , s ) 之间的关系 , 代回 A m × n x = 0 的通解 , 即得公共解 . 求出 \boldsymbol{A}_{m \times, n} \boldsymbol{x}=\mathbf{0} 的通解 k_{1} \boldsymbol{\xi}_{1}+k_{2} \boldsymbol{\xi}_{2}+\cdots+k_{,} \boldsymbol{\xi}_{\mathbf{n}} , 代人 \boldsymbol{B}_{m \times n} \boldsymbol{x}=\mathbf{0} , 求出 k_{i}(i=1,2, \cdots, s) 之间的关系, 代回 \boldsymbol{A}_{m \times n} \boldsymbol{x}=\mathbf{0} 的通解, 即得公共解. 求出Am×,nx=0的通解k1ξ1+k2ξ2++k,ξn,代人Bm×nx=0,求出ki(i=1,2,,s)之间的关系,代回Am×nx=0的通解,即得公共解.
  3. 求出各自基础解系,令其相等,求出 k , l k,l k,l关系,代回任一通解
例题

已知线性方程组 ( I ) { x 1 + x 2 = 0 , x 2 − x 4 = 0 , ( I I ) { x 1 − x 2 + x 3 = 0 , x 2 − x 3 + x 4 = 0. 已知线性方程组( I ) \left\{\begin{array}{l}x_{1}+x_{2}=0, \\ x_{2}-x_{4}=0,\end{array}\right. (II) \left\{\begin{array}{l}x_{1}-x_{2}+x_{3}=0, \\ x_{2}-x_{3}+x_{4}=0 .\end{array}\right. 已知线性方程组(I){x1+x2=0,x2x4=0,(II){x1x2+x3=0,x2x3+x4=0.

求通解

在这里插入图片描述

同解方程组

有完全相同的解

r ( A ) = r ( B ) = r ( [ A B ] ) (  三秩相同较方便  ) r(\boldsymbol{A})=r(\boldsymbol{B})=r\left(\left[\begin{array}{l}\boldsymbol{A} \\\boldsymbol{B}\end{array}\right]\right)(\text { 三秩相同较方便 }) r(A)=r(B)=r([AB])( 三秩相同较方便 )

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
大学生就业服务平台管理系统按照操作主体分为管理员和用户。管理员的功能包括学生档案管理、字典管理、试卷管理、试卷选题管理、试题表管理、考试记录表管理、答题详情表管理、错题表管理、法律法规管理、法律法规收藏管理、法律法规留言管理、就业分析管理、论坛管理、企业管理、简历管理、老师管理、简历投递管理、新闻资讯管理、新闻资讯收藏管理、新闻资讯留言管理、学生信息管理、宣传管理、学生管理、职位招聘管理、职位收藏管理、招聘咨询管理、管理员管理。用户的功能等。该系统采用了Mysql数据库,Java语言,Spring Boot框架等技术进行编程实现。 大学生就业服务平台管理系统可以提高大学生就业服务平台信息管理问题的解决效率,优化大学生就业服务平台信息处理流程,保证大学生就业服务平台信息数据的安全,它是一个非常可靠,非常安全的应用程序。 管理员权限操作的功能包括管理新闻信息,管理大学生就业服务平台信息,包括考试管理,培训管理,投递管理,薪资管理等,可以管理新闻信息。 考试管理界面,管理员在考试管理界面中可以对界面中显示,可以对考试信息的考试状态进行查看,可以添加新的考试信息等。投递管理界面,管理员在投递管理界面中查看投递种类信息,投递描述信息,新增投递信息等。新闻信息管理界面,管理员在新闻信息管理界面中新增新闻信息,可以删除新闻信息。新闻信息类型管理界面,管理员在新闻信息类型管理界面查看新闻信息的工作状态,可以对新闻信息的数据进行导出,可以添加新新闻信息的信息,可以编辑新闻信息信息,删除新闻信息信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值