线代 第三讲 向量组

重点

向量

秩即

线性无关数

独立信息数

定义

n n n维向量

n  个数构成的一个有序数组  [ a 1 , a 2 , ⋯   , a n ] n \text { 个数构成的一个有序数组 }\left[a_{1}, a_{2}, \cdots, a_{n}\right] n 个数构成的一个有序数组 [a1,a2,,an]

对应元素相等 → \to 向量相等

加法:对应元素相加

数乘:同矩阵

向量组

线性组合

β = k 1 α 1 + k 2 α 2 + ⋯ + k m α m \boldsymbol{\beta}=k_{1} \boldsymbol{\alpha}_{1}+k_{2} \boldsymbol{\alpha}_{2}+\cdots+k_{m} \boldsymbol{\alpha}_{m} β=k1α1+k2α2++kmαm

线性表出

线性关系表示出来

 若向量  β  能表示成向量组  α 1 , α 2 , ⋯   , α m  的线性组合, 即存在  m  个数  k 1 , k 2 , ⋯   , k m , 使得  \text { 若向量 } \boldsymbol{\beta} \text { 能表示成向量组 } \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} \text { 的线性组合, 即存在 } m \text { 个数 } k_{1}, k_{2}, \cdots, k_{m} \text {, 使得 }  若向量 β 能表示成向量组 α1,α2,,αm 的线性组合即存在 m 个数 k1,k2,,km使得 

β = k 1 α 1 + k 2 α 2 + ⋯ + k m α m \boldsymbol{\beta}=k_{1} \boldsymbol{\alpha}_{1}+k_{2} \boldsymbol{\alpha}_{2}+\cdots+k_{m} \boldsymbol{\alpha}_{m} β=k1α1+k2α2++kmαm

 则称向量  β  能被向量组  α 1 , α 2 , ⋯   , α m  线性表出  \text { 则称向量 } \boldsymbol{\beta} \text { 能被向量组 } \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} \text { 线性表出 }  则称向量 β 能被向量组 α1,α2,,αm 线性表出 

线性相关

对  m  个  n  维向量  α 1 , α 2 , ⋯   , α m , 若存在一组不全为零的数  k 1 , k 2 , ⋯   , k m , 使得  \text {对 } m \text { 个 } n \text { 维向量 } \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} \text {, 若存在一组不全为零的数 } k_{1}, k_{2}, \cdots, k_{m} \text {, 使得 }  m  n 维向量 α1,α2,,αm若存在一组不全为零的数 k1,k2,,km使得 

k 1 α 1 + k 2 α 2 + ⋯ + k m α m = 0 k_{1} \boldsymbol{\alpha}_{1}+k_{2} \boldsymbol{\alpha}_{2}+\cdots+k_{m} \boldsymbol{\alpha}_{m}=\mathbf{0} k1α1+k2α2++kmαm=0

含有零向量,成比例向量皆线性相关

即有多余向量,有多余方程

线性无关

与线性相关相对,二者必选其一

 单个非零向量, 两个不成比例的向量均线性无关  \text { 单个非零向量, 两个不成比例的向量均线性无关 }  单个非零向量两个不成比例的向量均线性无关 

一个向量作为向量组的情况

在这里插入图片描述

线性相关的判定

定理一:定义法

在这里插入图片描述

逆否命题

向 α 1 , α 2 , ⋯   , α n ( n ⩾ 2 ) 线性无关充要条件 α 1 , α 2 , ⋯   , α n 中任一向量都不能由其余的 n − 1 个向量线性表出 . 向\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}(n \geqslant 2) 线性无关 充要条件 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n} 中任一向量都不能由其 余的 n-1 个向量线性表出. α1,α2,,αn(n2)线性无关充要条件α1,α2,,αn中任一向量都不能由其余的n1个向量线性表出.

定理二

X 定理 2 若向量组 α 1 , α 2 , ⋯   , α n 线性无关 , 而 β , α 1 , α 2 , ⋯   , α n 线性相关 , \boldsymbol{X} 定理 2 若向量组 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n} 线性无关, 而 \boldsymbol{\beta}, \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n} 线性相关, X定理2若向量组α1,α2,,αn线性无关,β,α1,α2,,αn线性相关,

则 β 可由 α 1 , α 2 , ⋯   , α n 线性表示 , 且表示法唯一 . 则 \boldsymbol{\beta} 可由 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n} 线性表 示, 且表示法唯一. β可由α1,α2,,αn线性表示,且表示法唯一.

0可由非0表处

非0不可由0表出

定理三

在这里插入图片描述

证明

在这里插入图片描述

定理4

设 m 个 n 维列向量 α 1 , α 2 , ⋯   , α m , 其中 α 1 = [ a 11 , a 21 , ⋯   , a n 1 ] T , α 2 = [ a 12 , a 22 , ⋯   , a n 2 ] T , ⋯ ⋯ α m = [ a 1 m , a 2 m , ⋯   , a n m ] ⊤ . 设 m 个 n 维列向量 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} , 其中\begin{aligned}\boldsymbol{\alpha}_{1}= & {\left[a_{11}, a_{21}, \cdots, a_{n 1}\right]^{\mathrm{T}}, } \\\boldsymbol{\alpha}_{2}= & {\left[a_{12}, a_{22}, \cdots, a_{n 2}\right]^{\mathrm{T}}, } \\& \cdots \cdots \\\boldsymbol{\alpha}_{m}= & {\left[a_{1 m}, a_{2 m}, \cdots, a_{n m}\right]^{\top} . }\end{aligned} mn维列向量α1,α2,,αm,其中α1=α2=αm=[a11,a21,,an1]T,[a12,a22,,an2]T,⋯⋯[a1m,a2m,,anm].

则向量组 α 1 , α 2 , ⋯   , α m 线性相关的充分必要条件是齐次线性方程组 A x = 0 ( ∗ ) 有非零解 , 其中 则向量组 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} 线性相关的充分必要条件是齐次线性方程组 \boldsymbol{A} \boldsymbol{x}=\mathbf{0} (*)有非零解, 其中 则向量组α1,α2,,αm线性相关的充分必要条件是齐次线性方程组Ax=0()有非零解,其中

A = [ α 1 , α 2 , ⋯   , α m ] = [ a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋮ a m 1 a n 2 ⋯ a m m ] , x = [ x 1 x 2 ⋮ x m ] \boldsymbol{A}=\left[\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}\right]=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 m} \\a_{21} & a_{22} & \cdots & a_{2 m} \\\vdots & \vdots & & \vdots \\a_{m 1} & a_{n 2} & \cdots & a_{m m}\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{c}x_{1} \\x_{2} \\\vdots \\x_{m}\end{array}\right] A=[α1,α2,,αm]= a11a21am1a12a22an2a1ma2mamm ,x= x1x2xm

其中, m m m是行数,即未知数个数

	 $n$是列数,可以理解为空间维度数

其等价命题 : m 个 n 维列向量 α 1 , α 2 , ⋯   , α m 线性无关的充分必要条件是齐次线性方程组 ( ∗ ) 只有零解 . 其等价命题: m 个 n 维列向量 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} 线性无关的充分必要条件是齐次线性方程组 (*) 只有 零解. 其等价命题:mn维列向量α1,α2,,αm线性无关的充分必要条件是齐次线性方程组()只有零解.

注1

n < m → n<m\to n<m方程必有非零解 → \to 线性相关

n = < = m → n=<=m\to n=<=m求行列式值 → \to 为零则线性相关

n > m → n>m\to n>m使用定理6、7判断

定理5

探讨与秩的关系

向量 β 可由向量组 α 1 , α 2 , ⋯   , α s 线性表出 ⇔ 非齐次线性方程组 [ α 1 , α 2 , ⋯   , α s ] [ x 1 x 2 ⋮ x s ] = α 1 x 1 + α 2 x 2 + ⋯ + α s x s = β  有解  ‾ ⇔ r ( [ α 1 , α 2 , ⋯   , α s ] ) = r ( [ α 1 , α 2 , ⋯   , α s , β ^ ] ) . 向量 \boldsymbol{\beta} 可由向量组 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s} 线性表出 \Leftrightarrow 非齐次线性方程组 \left[\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{s}\end{array}\right]=\underline{\boldsymbol{\alpha}_{1} x_{1}+\boldsymbol{\alpha}_{2} x_{2}+\cdots+\boldsymbol{\alpha}_{s} x_{s}=\boldsymbol{\beta} \text { 有解 }} \Leftrightarrow r\left(\left[\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s}\right]\right)=r\left(\left[\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s}, \hat{\boldsymbol{\beta}}\right]\right) . 向量β可由向量组α1,α2,,αs线性表出非齐次线性方程组[α1,α2,,αs] x1x2xs =α1x1+α2x2++αsxs=β 有解 r([α1,α2,,αs])=r([α1,α2,,αs,β^]).

反之则有 , 向量 β 不能由向量组 α 1 , α 2 , ⋯   , α s 线性表出 ⇔ [ α 1 , α 2 , ⋯   , α s ] [ x 1 x 2 ⋮ x s ] = α 1 x 1 + α 2 x 2 + ⋯ + α s x = β  无解  ⇔ r ( [ α 1 , α 2 , ⋯   , α s ] ) ≠ r ( [ α 1 , α 2 , ⋯   , α s , β ] ) . 反之则有, 向量 \boldsymbol{\beta} 不能由向量组 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s} 线性表出 \Leftrightarrow\left[\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{s}\end{array}\right]=\boldsymbol{\alpha}_{1} x_{1}+\boldsymbol{\alpha}_{2} x_{2}+\cdots+ \boldsymbol{\alpha}_{s} x=\boldsymbol{\beta} \text { 无解 } \Leftrightarrow r\left(\left[\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s}\right]\right) \neq r\left(\left[\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s}, \boldsymbol{\beta}\right]\right) . 反之则有,向量β不能由向量组α1,α2,,αs线性表出[α1,α2,,αs] x1x2xs =α1x1+α2x2++αsx=β 无解 r([α1,α2,,αs])=r([α1,α2,,αs,β]).

定理6

 如果向量组  α 1 , α 2 , ⋯   , α m  中有一部分向量线性相关, 则整个向量组也线性相关。整体线性无关,则处处无关  \text { 如果向量组 } \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} \text { 中有一部分向量线性相关, 则整个向量组也线性相关。整体线性无关,则处处无关 }  如果向量组 α1,α2,,αm 中有一部分向量线性相关则整个向量组也线性相关。整体线性无关,则处处无关 

定理7

在这里插入图片描述

极大无关组

 在向量组  α 1 , α 2 , ⋯   , α s  中, 若存在部分组  α i i , α i i , ⋯   , α i ;  满足:  \text { 在向量组 } \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s} \text { 中, 若存在部分组 } \boldsymbol{\alpha}_{i_{i}}, \boldsymbol{\alpha}_{i_{i}}, \cdots, \boldsymbol{\alpha}_{i ;} \text { 满足: }  在向量组 α1,α2,,αs 若存在部分组 αii,αii,,αi; 满足

  1. 此部分组线性无关
  2. 任一向量都可用此部分表出

我们称为极大线性无关组

性质

不唯一

但成员个数唯一,即秩,即向量组所张成的空间维度

怎么求

  1. 将列向量组成矩阵,作初等行变换,化为行阶梯型矩阵,求秩
  2. 按列找出一个秩为 R ( A ) R(A) R(A)的子矩阵,即解答完毕

等价向量组

可相互表出 → \to 等价

记作: ( I ) ≅ ( I I ) (I) \cong(I I) (I)(II)

若  (  I  ) ≅ (  II  ) , (  II  ) ≅ (  III  ) , 则  ( I ) ≅ (  III  )  (传递性)  \text {若 }(\text { I }) \cong(\text { II }),(\text { II }) \cong(\text { III }) \text {, 则 }(I) \cong(\text { III }) \text { (传递性) }  ( I )( II ),( II )( III ) (I)( III ) (传递性

向量组与其极大无关组等价

与矩阵等价区别

矩阵等价

A 、 B A、B AB同型下,要求秩相等

向量组等价

同维下, r ( I ) = r ( I ) ) = r ( I ∣ I I ) \begin{array}{l}r(I)=r(I)) =r(I \mid I I)\end{array} r(I)=r(I))=r(III)

有关秩

  1. r ( A )  (矩阵的秩)  = A  的行秩  ( A  的行向量组的秩)  = A  的列秩  ( A  的列向量组的秩)  r(\boldsymbol{A}) \text { (矩阵的秩) }=\boldsymbol{A} \text { 的行秩 }(\boldsymbol{A} \text { 的行向量组的秩) }=\boldsymbol{A} \text { 的列秩 }(\boldsymbol{A} \text { 的列向量组的秩) } r(A) (矩阵的秩=A 的行秩 (A 的行向量组的秩=A 的列秩 (A 的列向量组的秩
  2. A → 初等行变换 = B A\to^{初等行变换}=B A初等行变换=B,则两行向量组等价,任何柤应的部分列向量组具有相同的线性相关性
  3. B B B可由 A A A表出,则 r ( B ) < r ( A ) r(B)<r(A) r(B)<r(A),即被表出量,秩不大

在这里插入图片描述

向量空间

定义

在这里插入图片描述

##定理8

 若  η 1 , η 2 , ⋯   , η n  和  ξ 1 , ξ 2 , ⋯   , ξ n  是  R n  中的两个基, 且有关系  \text { 若 } \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta}_{n} \text { 和 } \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n} \text { 是 } \mathbf{R}^{n} \text { 中的两个基, 且有关系 }   η1,η2,,ηn  ξ1,ξ2,,ξn  Rn 中的两个基且有关系 

[ η 1 , η 2 , ⋯   , η n ] = [ ξ 1 , ξ 2 , ⋯   , ξ n ] [ c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋮ ⋮ ⋮ c n 1 c n 2 ⋯ c m ] = [ ξ 1 , ξ 2 , ⋯   , ξ n ] C , \left[\boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta}_{n}\right]=\left[\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n}\right]\left[\begin{array}{cccc}c_{11} & c_{12} & \cdots & c_{1 n} \\c_{21} & c_{22} & \cdots & c_{2 n} \\\vdots & \vdots & & \vdots \\c_{n 1} & c_{n 2} & \cdots & c_{m}\end{array}\right]=\left[\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n}\right] \boldsymbol{C}, [η1,η2,,ηn]=[ξ1,ξ2,,ξn] c11c21cn1c12c22cn2c1nc2ncm =[ξ1,ξ2,,ξn]C,

 称为由基  ξ 1 , ξ 2 , ⋯   , ξ n  到基  η 1 , η 2 , ⋯   , η n  的基变换公式, 矩阵  C  称为由基  ξ 1 , ξ 2 , ⋯   , ξ n  到基  η 1 ,  \text { 称为由基 } \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n} \text { 到基 } \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta}_{n} \text { 的基变换公式, 矩阵 } \boldsymbol{C} \text { 称为由基 } \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n} \text { 到基 } \boldsymbol{\eta}_{1} \text {, }  称为由基 ξ1,ξ2,,ξn 到基 η1,η2,,ηn 的基变换公式矩阵 C 称为由基 ξ1,ξ2,,ξn 到基 η1

η 2 , ⋯   , η w  的过渡矩阵,  C  的第  i  列即是  η i  在基  ξ 1 , ξ 2 , ⋯   , ξ n  下的坐标, 且过渡矩阵  C  是可逆矩阵  \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta}_{w} \text { 的过渡矩阵, } \boldsymbol{C} \text { 的第 } i \text { 列即是 } \boldsymbol{\eta}_{i} \text { 在基 } \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n} \text { 下的坐标, 且过渡矩阵 } \boldsymbol{C} \text { 是可逆矩阵 } η2,,ηw 的过渡矩阵C 的第 i 列即是 ηi 在基 ξ1,ξ2,,ξn 下的坐标且过渡矩阵 C 是可逆矩阵 

在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值