第五讲 一元函数微分学的几何应用

重点

单调性、凹凸性、拐点(5‘)

渐近线(5’)

最值、取值范围(5‘)

做函数图形,含参方程根是重点(5/12’)

总结

极值点与单调性是一对
拐点与凹凸性是一对
好吃与懒做是一对
赵坤与许燚是一对

极限为无穷 → \to 铅锤线
为常数 → \to 水平线
为直线 → \to 斜渐近线

概念

极值、最值

在这里插入图片描述

有最值不一定有极值

 设  f ( x ) = e x , x ∈ [ 0 , + ∞ ) .  \text { 设 } f(x)=\mathrm{e}^{x}, x \in[0,+\infty) \text {. }   f(x)=ex,x[0,+)

在这里插入图片描述

只有单侧有定义,不满足双侧有定义,仅有最值

最值点不一定是极值点

有极值点不一定有最值点

f ( x ) = 3 x − x 3 f(x)=3 x-x^{3} f(x)=3xx3

在这里插入图片描述

极值点不一定是最值点

最值点 x 0 ∈ I , 且 x 0 不是端点 , 则必是极值点 \text最值点 x_{0}\in I,\text且 x_{0} \text不是端点,则必是极值点 值点x0I,x0是端点,则必是极值点

间断点是极值点

在这里插入图片描述

在这里插入图片描述

单调与极值判别

单调性

f ′ ( x ) > 0 → 单调增 f'(x)>0 \to \text单调增 f(x)>0调增

f ′ ( x ) < 0 → 单调减 f'(x)<0 \to \text单调减 f(x)<0调减

极值

必要条件

只能前推后

 设  f ( x )  在  x = x 0  处可导, 且在点  x 0  处取得极值, 则必有  f ′ ( x 0 ) = 0 \text { 设 } f(x) \text { 在 } x=x_{0} \text { 处可导, 且在点 } x_{0} \text { 处取得极值, 则必有 } f^{\prime}\left(x_{0}\right)=0   f(x)  x=x0 处可导且在点 x0 处取得极值则必有 f(x0)=0

充分条件
一阶导变号

在这里插入图片描述

一阶导为0,二阶导正负

f ′ ( x ) = 0 , f ′ ′ ( x ) ≠ 0 f'(x)=0 ,f''(x)\ne0 f(x)=0,f′′(x)=0

f ′ ′ ( x ) < 0 → 极大值点 f''(x)<0 \to \text极大值点 f′′(x)<0大值点

f ′ ′ ( x ) > 0 → 极小值点 f''(x)>0 \to \text极小值点 f′′(x)>0小值点

偶数阶导

在这里插入图片描述

凹凸性

概念

在这里插入图片描述

拐点

凹凸分界点

  • 拐点只需连续
  • 凹凸不分先后
  • 写成 ( x 0 , f ( x 0 ) ) (x_{0},f(x_{0})) (x0,f(x0))
  • 分段函数间断点另算

判定

凹凸性

在这里插入图片描述

拐点的必要条件

何为必要条件,前推后必存在

f ′ ′ ( x ) = 0 f''(x)=0 f′′(x)=0

拐点的判定
  • 二阶导存在且变号

  • 二阶导为0,三阶导不为0

  • 奇数阶导不为0

在这里插入图片描述

渐近线

铅锤渐近线

 若  lim ⁡ x → x − f ( x ) = ∞  (或  lim ⁡ x → x 0 − f ( x ) = ∞ ) , 则  x = x 0  为一条铅垂渐进线  \text { 若 } \left.\lim _{x \rightarrow x^{-}} f(x)=\infty \text { (或 } \lim _{x \rightarrow x_{0}^{-}} f(x)=\infty\right) \text {, 则 } x=x_{0} \text { 为一条铅垂渐进线 }   limxxf(x)= ( limxx0f(x)=) x=x0 为一条铅垂渐进线 

在这里插入图片描述

水平渐近线

在这里插入图片描述

斜渐近线

在这里插入图片描述

画图

  1. 定义域、奇偶性
  2. 找点,画表格
  3. 渐近线

在这里插入图片描述

在这里插入图片描述

weixin073智慧旅游平台开发信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值