第五讲 一元函数微分学的几何应用
重点
单调性、凹凸性、拐点(5‘)
渐近线(5’)
最值、取值范围(5‘)
做函数图形,含参方程根是重点(5/12’)
总结
极值点与单调性是一对
拐点与凹凸性是一对
好吃与懒做是一对
赵坤与许燚是一对
极限为无穷
→
\to
→铅锤线
为常数
→
\to
→水平线
为直线
→
\to
→斜渐近线
概念
极值、最值
有最值不一定有极值
设 f ( x ) = e x , x ∈ [ 0 , + ∞ ) . \text { 设 } f(x)=\mathrm{e}^{x}, x \in[0,+\infty) \text {. } 设 f(x)=ex,x∈[0,+∞).
只有单侧有定义,不满足双侧有定义,仅有最值
最值点不一定是极值点
有极值点不一定有最值点
f ( x ) = 3 x − x 3 f(x)=3 x-x^{3} f(x)=3x−x3
极值点不一定是最值点
最值点 x 0 ∈ I , 且 x 0 不是端点 , 则必是极值点 \text最值点 x_{0}\in I,\text且 x_{0} \text不是端点,则必是极值点 最值点x0∈I,且x0不是端点,则必是极值点
间断点是极值点
单调与极值判别
单调性
f ′ ( x ) > 0 → 单调增 f'(x)>0 \to \text单调增 f′(x)>0→单调增
f ′ ( x ) < 0 → 单调减 f'(x)<0 \to \text单调减 f′(x)<0→单调减
极值
必要条件
只能前推后
设 f ( x ) 在 x = x 0 处可导, 且在点 x 0 处取得极值, 则必有 f ′ ( x 0 ) = 0 \text { 设 } f(x) \text { 在 } x=x_{0} \text { 处可导, 且在点 } x_{0} \text { 处取得极值, 则必有 } f^{\prime}\left(x_{0}\right)=0 设 f(x) 在 x=x0 处可导, 且在点 x0 处取得极值, 则必有 f′(x0)=0
充分条件
一阶导变号
一阶导为0,二阶导正负
f ′ ( x ) = 0 , f ′ ′ ( x ) ≠ 0 f'(x)=0 ,f''(x)\ne0 f′(x)=0,f′′(x)=0
f ′ ′ ( x ) < 0 → 极大值点 f''(x)<0 \to \text极大值点 f′′(x)<0→极大值点
f ′ ′ ( x ) > 0 → 极小值点 f''(x)>0 \to \text极小值点 f′′(x)>0→极小值点
偶数阶导
凹凸性
概念
拐点
凹凸分界点
- 拐点只需连续
- 凹凸不分先后
- 写成 ( x 0 , f ( x 0 ) ) (x_{0},f(x_{0})) (x0,f(x0))
- 分段函数间断点另算
判定
凹凸性
拐点的必要条件
何为必要条件,前推后必存在
f ′ ′ ( x ) = 0 f''(x)=0 f′′(x)=0
拐点的判定
-
二阶导存在且变号
-
二阶导为0,三阶导不为0
-
奇数阶导不为0
渐近线
铅锤渐近线
若 lim x → x − f ( x ) = ∞ (或 lim x → x 0 − f ( x ) = ∞ ) , 则 x = x 0 为一条铅垂渐进线 \text { 若 } \left.\lim _{x \rightarrow x^{-}} f(x)=\infty \text { (或 } \lim _{x \rightarrow x_{0}^{-}} f(x)=\infty\right) \text {, 则 } x=x_{0} \text { 为一条铅垂渐进线 } 若 limx→x−f(x)=∞ (或 limx→x0−f(x)=∞), 则 x=x0 为一条铅垂渐进线
水平渐近线
斜渐近线
画图
- 定义域、奇偶性
- 找点,画表格
- 渐近线