重点
零点问题
大题
零点定理,证存在性
单调性,证唯一性
小题工具
罗尔原话
实系数奇次方程至少有一个实根
微分不等式
函数性态
常数变量化
中值定理
零点问题
零点定理
当 f ( x ) 在 [ a , b ] 上连续,且 f ( a ) ⋅ f ( b ) < 0 时 \text {当 }f(x)\text 在 [a,b]\text {上连续,且} f(a) \cdot f(b)<0 \text { 时} 当 f(x)在[a,b]上连续,且f(a)⋅f(b)<0 时,则 f ( x ) = 0 f(x)=0 f(x)=0,在 ( a , b ) (a,b) (a,b)内至少有一个根
推广的零点定理: 若 f ( x ) 在 ( a , b ) 内连续 , lim x → a + f ( x ) = α , lim x → b f ( x ) = β 若 f(x) 在 (a, b) 内连 续, \lim _{x \rightarrow a^{+}} f(x)=\alpha, \lim _{x \rightarrow b} f(x)=\beta 若f(x)在(a,b)内连续,limx→a+f(x)=α,limx→bf(x)=β ,
且 α ⋅ β < 0 \alpha \cdot \beta<0 α⋅β<0
则 f ( x ) = 0 在 ( a , b ) 则 f(x)=0 在 (a, b) 则f(x)=0在(a,b) 内至少有一个根,
这里 a , b , α , β a, b, \alpha, \beta a,b,α,β 可以是有限数, 也可以是无穷大
单调性
罗尔原话
若 f ( n ) ( x ) = 0 至多有 k 个根, 则 f ( x ) = 0 至多有 k + n 个根 \text { 若 } f^{(n)}(x)=0 \text { 至多有 } k \text { 个根, 则 } f(x)=0 \text { 至多有 } k+n \text { 个根 } 若 f(n)(x)=0 至多有 k 个根, 则 f(x)=0 至多有 k+n 个根
阶数降多少,根数加多少
只用不证
实系数奇数方程至少一个实根
x 2 n + 1 + a 1 x 2 n + ⋯ + a 2 n x + a 2 n + 1 = 0 x^{2 n+1}+a_{1} x^{2 n}+\cdots+a_{2 n} x+a_{2 n+1}=0 x2n+1+a1x2n+⋯+a2nx+a2n+1=0
微分不等式
函数性态
单调性(主流考法)
最值(重要)
凹凸性
常数变量化
中值定理或泰勒