第七讲 零点与微分不等式

文章探讨了零点问题,强调了零点定理在证明存在性和唯一性中的应用,以及单调性如何影响零点的数量。此外,还提到了实系数奇数次方程至少有一个实根的性质。微分不等式主要关注函数的单调性和最值问题,同时也讨论了凹凸性和中值定理的相关应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重点

零点问题

大题

零点定理,证存在性

单调性,证唯一性

小题工具

罗尔原话

实系数奇次方程至少有一个实根

微分不等式

函数性态

常数变量化

中值定理

零点问题

零点定理

当  f ( x ) 在 [ a , b ] 上连续,且 f ( a ) ⋅ f ( b ) < 0  时 \text {当 }f(x)\text 在 [a,b]\text {上连续,且} f(a) \cdot f(b)<0 \text { 时}  f(x)[a,b]上连续,且f(a)f(b)<0 ,则 f ( x ) = 0 f(x)=0 f(x)=0,在 ( a , b ) (a,b) (a,b)内至少有一个根

推广的零点定理: 若 f ( x ) 在 ( a , b ) 内连续 , lim ⁡ x → a + f ( x ) = α , lim ⁡ x → b f ( x ) = β 若 f(x) 在 (a, b) 内连 续, \lim _{x \rightarrow a^{+}} f(x)=\alpha, \lim _{x \rightarrow b} f(x)=\beta f(x)(a,b)内连续,limxa+f(x)=α,limxbf(x)=β ,

​ 且 α ⋅ β < 0 \alpha \cdot \beta<0 αβ<0

则 f ( x ) = 0 在 ( a , b ) 则 f(x)=0 在 (a, b) f(x)=0(a,b) 内至少有一个根,

​ 这里 a , b , α , β a, b, \alpha, \beta a,b,α,β 可以是有限数, 也可以是无穷大

单调性

在这里插入图片描述

罗尔原话

 若  f ( n ) ( x ) = 0  至多有  k  个根, 则  f ( x ) = 0  至多有  k + n  个根  \text { 若 } f^{(n)}(x)=0 \text { 至多有 } k \text { 个根, 则 } f(x)=0 \text { 至多有 } k+n \text { 个根 }   f(n)(x)=0 至多有 k 个根 f(x)=0 至多有 k+n 个根 

​ 阶数降多少,根数加多少

​ 只用不证

实系数奇数方程至少一个实根

x 2 n + 1 + a 1 x 2 n + ⋯ + a 2 n x + a 2 n + 1 = 0 x^{2 n+1}+a_{1} x^{2 n}+\cdots+a_{2 n} x+a_{2 n+1}=0 x2n+1+a1x2n++a2nx+a2n+1=0

在这里插入图片描述

微分不等式

函数性态

单调性(主流考法)

在这里插入图片描述

最值(重要)

在这里插入图片描述

凹凸性

在这里插入图片描述

常数变量化

在这里插入图片描述

中值定理或泰勒

在这里插入图片描述
img

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值