线代 第一讲

线代 第一讲

重点

考研

  • 基本概念和方法
  • 计算能力
  • 创新题
  • 复习要全面

线代

基础篇:行列式、矩阵

主题篇:向量组、方程组

应用篇:特征值、二次型

分值分布

选择题:3个(5’)

填空题:1个(5‘)

大题: 1个(5’)

出题人每年都求新求变,必须深刻理解线代

内容

行列式定义

基础

计算

5‘

具体型

抽象型

余子式与代数余子式的计算

5’

很有区分度

行列式基础

几何定义

$ n 阶行列式是由 n 个 n 维向量 \boldsymbol{\alpha}{1}=\left[a{11}, a_{12}, \cdots, a_{1 n}\right], \boldsymbol{\alpha}{2}=\left[a{21}, a_{22}, \cdots, a_{2 n}\right], \cdots, \boldsymbol{\alpha}{n}=\left[a{n 1}, a_{n 2}, \cdots, a_{n n}\right]$

组成的 , 其 ( 运算规则的 ) 结果为以这 n 个向量为邻边的 n 维图形的体积 组成 的, 其 (运算规则的)结果为以这 n 个向量为邻边的 n 维图形的体积 组成的,(运算规则的)结果为以这n个向量为邻边的n维图形的体积

性质

  • 行列互换,其值不变
  • 某行某列全为0,行列式为0
  • 某行为两个元素之和,可拆成两个行列式
  • 两行互换,其值变负
  • 某行 k k k倍加到另一行,其值不变
  • 两行元素相等或成比例,其值为0
换行

最后一行换到第一行共需 n − 1 n-1 n1

将每一行都换到对应前面去,如倒数第二行换到第二行,共需 n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n1)

逆序法定义

排列:  如  23145  是一个  5  级排列  \text { 如 } 23145 \text { 是一个 } 5 \text { 级排列 }   23145 是一个 5 级排列 

逆序:两个数,大的排在小的前面

逆序数:一个排列中,逆序的总数

奇排列:逆序数为奇数

偶排列:逆序数为偶数

n阶行列式的定义

$ n(n \geqslant 2) 阶行列式\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \a_{21} & a_{22} & \cdots & a_{2 n} \\vdots & \vdots & & \vdots \a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|=\sum_{j_{1} j_{2} \cdots j_{n}}(-1)^{\left. {\tau \left( j_{1} j_{2}\right.}{} \cdots j_{n} \right) } a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}}$
在这里插入图片描述

 每项的正、负号取决于  ( − 1 ) τ ( j 1 j 2 ⋯ j n ) \text { 每项的正、负号取决于 }(-1)^{\tau\left(j_{1} j_{2} \cdots j_{n}\right)}  每项的正、负号取决于 (1)τ(j1j2jn)

∣ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ∣ = a 1 b 2 c 3 + a 2 b 3 c 1 + a 3 b 1 c 2 − a 1 b 3 c 2 − a 2 b 1 c 3 − a 3 b 2 c 1 \left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\b_{1} & b_{2} & b_{3} \\c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}-a_{3} b_{2} c_{1} a1b1c1a2b2c2a3b3c3 =a1b2c3+a2b3c1+a3b1c2a1b3c2a2b1c3a3b2c1

展开定理

余子式

去除该元素,余下的部分

代数余子式

A i j = ( − 1 ) i + j M i j A_{i j}=(-1)^{i+j} M_{i j} Aij=(1)i+jMij

按某一行展开公式

∣ A ∣ = { a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n = ∑ j = 1 n a i j A i j ( i = 1 , 2 , ⋯   , n ) , a 1 j A 1 j + a 2 j A 2 j + ⋯ + a n j A n j = ∑ i = 1 n a i j A i j ( j = 1 , 2 , ⋯   , n ) . |\boldsymbol{A}|=\left\{\begin{array}{l}a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\cdots+a_{i n} A_{i n}=\sum_{j=1}^{n} a_{i j} A_{i j}(i=1,2, \cdots, n), \\a_{1 j} A_{1 j}+a_{2 j} A_{2 j}+\cdots+a_{n j} A_{n j}=\sum_{i=1}^{n} a_{i j} A_{i j}(j=1,2, \cdots, n) .\end{array}\right. A={ai1Ai1+ai2Ai2++ainAin=j=1naijAij(i=1,2,,n),a1jA1j+a2jA2j++anjAnj=i=1naijAij(j=1,2,,n).

行列式的值等于行列式的某行 (列) 元素分别乘其相应的代数余子式后再求和

重要行列式

主对角线行列式

∣ a 11 a 12 ⋯ a 1 n 0 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ 0 0 ⋯ a n n ∣ = ∣ a 11 0 ⋯ 0 a 21 a 22 ⋯ 0 ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∣ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ a n n ∣ = ∏ i = 1 n a i i \left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\0 & a_{22} & \cdots & a_{2 n} \\\vdots & \vdots & & \vdots \\0 & 0 & \cdots & a_{n n}\end{array}\right|=\left|\begin{array}{cccc}a_{11} & 0 & \cdots & 0 \\a_{21} & a_{22} & \cdots & 0 \\\vdots & \vdots & & \vdots \\a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|=\left|\begin{array}{cccc}a_{11} & 0 & \cdots & 0 \\0 & a_{22} & \cdots & 0 \\\vdots & \vdots & & \vdots \\0 & 0 & \cdots & a_{n n}\end{array}\right|=\prod_{i=1}^{n} a_{i i} a1100a12a220a1na2nann = a11a21an10a22an200ann = a11000a22000ann =i=1naii

副对角线行列式

∣ a 11 ⋯ a 1 , n − 1 a 1 n a 21 ⋯ a 2 , n − 1 0 ⋮ ⋮ ⋮ a n 1 ⋯ 0 0 ∣ = ∣ 0 ⋯ 0 a 1 n 0 ⋯ a 2 , n − 1 a 2 n ⋮ ⋮ ⋮ a n 1 ⋯ a n , n − 1 a n n ∣ = ∣ 0 ⋯ 0 a 1 n 0 ⋯ a 2 , n − 1 0 ⋮ ⋮ ⋮ a n 1 ⋯ 0 0 ∣ = ( − 1 ) n ( n − 1 ) 2 a 1 n a 2 , n − 1 ⋯ a n 1 . \begin{aligned}\left|\begin{array}{cccc}a_{11} & \cdots & a_{1, n-1} & a_{1 n} \\a_{21} & \cdots & a_{2, n-1} & 0 \\\vdots & & \vdots & \vdots \\a_{n 1} & \cdots & 0 & 0\end{array}\right| & =\left|\begin{array}{cccc}0 & \cdots & 0 & a_{1 n} \\0 & \cdots & a_{2, n-1} & a_{2 n} \\\vdots & & \vdots & \vdots \\a_{n 1} & \cdots & a_{n, n-1} & a_{n n}\end{array}\right|=\left|\begin{array}{cccc}0 & \cdots & 0 & a_{1 n} \\0 & \cdots & a_{2, n-1} & 0 \\\vdots & & \vdots & \vdots \\a_{n 1} & \cdots & 0 & 0\end{array}\right| \\& =(-1)^{\frac{n(n-1)}{2}} a_{1 n} a_{2, n-1} \cdots a_{n 1} .\end{aligned} a11a21an1a1,n1a2,n10a1n00 = 00an10a2,n1an,n1a1na2nann = 00an10a2,n10a1n00 =(1)2n(n1)a1na2,n1an1.

拉普拉斯展开式

 设  A  为  m  阶矩阵,  B  为  n  阶矩阵, 则  \text { 设 } \boldsymbol{A} \text { 为 } m \text { 阶矩阵, } \boldsymbol{B} \text { 为 } n \text { 阶矩阵, 则 }   A  m 阶矩阵B  n 阶矩阵 

主对角线

∣ A O O B ∣ = ∣ A C O B ∣ = ∣ A O C B ∣ = ∣ A ∣ ∣ B ∣ \left|\begin{array}{ll}\boldsymbol{A} & \boldsymbol{O} \\\boldsymbol{O} & \boldsymbol{B}\end{array}\right|=\left|\begin{array}{ll}\boldsymbol{A} & \boldsymbol{C} \\\boldsymbol{O} & \boldsymbol{B}\end{array}\right|=\left|\begin{array}{ll}\boldsymbol{A} & \boldsymbol{O} \\\boldsymbol{C} & \boldsymbol{B}\end{array}\right|=|\boldsymbol{A}||\boldsymbol{B}| AOOB = AOCB = ACOB =A∣∣B

副对角线

∣ O A B O ∣ = ∣ C A B O ∣ = ∣ O A B C ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣ \left|\begin{array}{ll}\boldsymbol{O} & \boldsymbol{A} \\\boldsymbol{B} & \boldsymbol{O}\end{array}\right|=\left|\begin{array}{ll}\boldsymbol{C} & \boldsymbol{A} \\\boldsymbol{B} & \boldsymbol{O}\end{array}\right|=\left|\begin{array}{ll}\boldsymbol{O} & \boldsymbol{A} \\\boldsymbol{B} & \boldsymbol{C}\end{array}\right|=(-1)^{m n}|\boldsymbol{A}||\boldsymbol{B}| OBAO = CBAO = OBAC =(1)mnA∣∣B

范德蒙德行列式

∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x n n − 1 ∣ = ∏ 1 ≤ i < j ⩽ n ( x j − x i ) \left|\begin{array}{cccc}1 & 1 & \cdots & 1 \\x_{1} & x_{2} & \cdots & x_{n} \\x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\\vdots & \vdots & & \vdots \\x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1}\end{array}\right|=\prod_{1 \leq i<j \leqslant n}\left(x_{j}-x_{i}\right) 1x1x12x1n11x2x22x2n11xnxn2xnn1 =1i<jn(xjxi)

计算

化基本型

直接展开
  • 某行有较多0
  • 阶数不高(3、4)
爪型

用斜的爪消去直爪

在这里插入图片描述

异爪型
  • 阶数不高,直接展开
  • 阶数高德,递推法
行和相等

所有列加,提公因式

D n = ∣ a b b ⋯ b b a b ⋯ b b b a ⋯ b ⋮ ⋮ ⋮ ⋮ b b b ⋯ a ∣ = [ a + ( n − 1 ) b ] ( a − b ) n − 1 D_{n}=\left|\begin{array}{ccccc}a & b & b & \cdots & b \\b & a & b & \cdots & b \\b & b & a & \cdots & b \\\vdots & \vdots & \vdots & & \vdots \\b & b & b & \cdots & a\end{array}\right|=[a+(n-1) b](a-b)^{n-1} Dn= abbbbabbbbabbbba =[a+(n1)b](ab)n1

列和相等反之

消0化基本形

化为三角形行列式

化拉普拉斯展开式

D 4 = ∣ a 1 0 0 b 1 0 a 2 b 2 0 0 b 3 a 3 0 b 4 0 0 a 4 ∣ = ( − 1 ) × ( − 1 ) ∣ a 1 b 1 0 0 b 4 a 4 0 0 0 0 a 3 b 3 0 0 b 2 a 2 ∣ D_{4}=\left|\begin{array}{cccc}a_{1} & 0 & 0 & b_{1} \\0 & a_{2} & b_{2} & 0 \\0 & b_{3} & a_{3} & 0 \\b_{4} & 0 & 0 & a_{4}\end{array}\right|=(-1) \times(-1)\left|\begin{array}{cccc}a_{1} & b_{1} & 0 & 0 \\b_{4} & a_{4} & 0 & 0 \\0 & 0 & a_{3} & b_{3} \\0 & 0 & b_{2} & a_{2}\end{array}\right| D4= a100b40a2b300b2a30b100a4 =(1)×(1) a1b400b1a40000a3b200b3a2

范德蒙德展开式

盯着第二行

∣ a b c a 2 b 2 c 2 b + c a + c a + b ∣ \left|\begin{array}{ccc}a & b & c \\a^{2} & b^{2} & c^{2} \\b+c & a+c & a+b\end{array}\right| aa2b+cbb2a+ccc2a+b

在这里插入图片描述

递推法

一点点推出 n n n阶行列式的表达式求结果

找第 n n n阶与第 n − 1 n-1 n1阶的关系

  • 元素分布规律相同
  • 只降一阶

D 4 = ∣ 1 − a a 0 0 − 1 1 − a a 0 0 − 1 1 − a a 0 0 − 1 1 − a ∣ = ( ) D_{4}=\left|\begin{array}{cccc}1-a & a & 0 & 0 \\-1 & 1-a & a & 0 \\0 & -1 & 1-a & a \\0 & 0 & -1 & 1-a\end{array}\right|=(\quad) D4= 1a100a1a100a1a100a1a =()

在这里插入图片描述

行列式表示函数和方程

 设  f ( x ) = ∣ 1 0 x 1 2 x 2 1 3 x 3 ∣ , 求  f ( x + 1 ) − f ( x ) \text { 设 } f(x)=\left|\begin{array}{lll}1 & 0 & x \\1 & 2 & x^{2} \\1 & 3 & x^{3}\end{array}\right| \text {, 求 } f(x+1)-f(x)   f(x)= 111023xx2x3  f(x+1)f(x)

 设  f ( x ) = ∣ x − 2 x − 1 x − 2 x − 3 2 x − 2 2 x − 1 2 x − 2 2 x − 3 3 x − 3 3 x − 2 4 x − 5 3 x − 5 4 x 4 x − 3 5 x − 7 4 x + 3 ∣ , 则方程  f ( x ) = 0  的根的个数为  \text { 设 } f(x)=\left|\begin{array}{cccc}x-2 & x-1 & x-2 & x-3 \\2 x-2 & 2 x-1 & 2 x-2 & 2 x-3 \\3 x-3 & 3 x-2 & 4 x-5 & 3 x-5 \\4 x & 4 x-3 & 5 x-7 & 4 x+3\end{array}\right| \text {, 则方程 } f(x)=0 \text { 的根的个数为 }   f(x)= x22x23x34xx12x13x24x3x22x24x55x7x32x33x54x+3 则方程 f(x)=0 的根的个数为 

按行列式规则正常运算即可

设关于 λ 的方程 ∣ λ − 1 − 2 3 1 λ − 4 3 − 1 a λ − 5 ∣ = 0 有二重根 , 求参数 a 的值 . 设关于 \lambda 的方程\left|\begin{array}{ccc}\lambda-1 & -2 & 3 \\1 & \lambda-4 & 3 \\-1 & a & \lambda-5\end{array}\right|=0有二重根, 求参数 a 的值. 设关于λ的方程 λ1112λ4a33λ5 =0有二重根,求参数a的值.

抽象行列式计算

考基本性质

在这里插入图片描述

考$\left | AB \right | =\left | A\right | \left | B \right | $

$ 设 \boldsymbol{\alpha}{1}, \boldsymbol{\alpha}{2}, \boldsymbol{\alpha}{3} 均为 3 维列向量, 已知\boldsymbol{A}=\left[\boldsymbol{\alpha}{1}, \boldsymbol{\alpha}{2}, \boldsymbol{\alpha}{3}\right], \quad $

$\boldsymbol{B}=\left[\boldsymbol{\alpha}{1}-\boldsymbol{\alpha}{2}+2 \boldsymbol{\alpha}{3}, 2 \boldsymbol{\alpha}{1}+3 \boldsymbol{\alpha}{2}-5 \boldsymbol{\alpha}{3}, \boldsymbol{\alpha}{1}+2 \boldsymbol{\alpha}{2}-\boldsymbol{\alpha}_{3}\right],且 |\boldsymbol{A}|=2 , 求 |\boldsymbol{B}-\boldsymbol{A}| $

在这里插入图片描述

余子式和代数余子式的混合运算

A 12 A_{12} A12是余子式

M 12 M_{12} M12是代数余子式

M 12 = ( − 1 ) 1 + 2 A 12 M_{12}=(-1)^{1+2}A_{12} M12=(1)1+2A12

 设  ∣ A ∣ = ∣ 2 − 1 2 3 0 1 − 1 0 2 3 4 5 1 1 1 1 ∣ , 则  A 31 + A 32 + A 33 + M 34 = (  )  \text { 设 }|\boldsymbol{A}|=\left|\begin{array}{cccc}2 & -1 & 2 & 3 \\0 & 1 & -1 & 0 \\2 & 3 & 4 & 5 \\1 & 1 & 1 & 1\end{array}\right| \text {, 则 } A_{31}+A_{32}+A_{33}+M_{34}=(\quad \text { ) }   A= 2021113121413051  A31+A32+A33+M34=( ) 

 本题即计算  A 31 + A 32 + A 33 − A 34 , 结果是将组合系数置换行列式中第  3  行元素后的行列式的值  \text { 本题即计算 } A_{31}+A_{32}+A_{33}-A_{34} \text {, 结果是将组合系数置换行列式中第 } 3 \text { 行元素后的行列式的值 }  本题即计算 A31+A32+A33A34结果是将组合系数置换行列式中第 3 行元素后的行列式的值 

即求: ∣ 2 − 1 2 3 0 1 − 1 0 1 1 1 − 1 1 1 1 1 ∣ = 6 \left|\begin{array}{cccc}2 & -1 & 2 & 3 \\0 & 1 & -1 & 0 \\1 & 1 & 1 & -1 \\1 & 1 & 1 & 1\end{array}\right|=6 2011111121113011 =6

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
大学生就业服务平台管理系统按照操作主体分为管理员和用户。管理员的功能包括学生档案管理、字典管理、试卷管理、试卷选题管理、试题表管理、考试记录表管理、答题详情表管理、错题表管理、法律法规管理、法律法规收藏管理、法律法规留言管理、就业分析管理、论坛管理、企业管理、简历管理、老师管理、简历投递管理、新闻资讯管理、新闻资讯收藏管理、新闻资讯留言管理、学生信息管理、宣传管理、学生管理、职位招聘管理、职位收藏管理、招聘咨询管理、管理员管理。用户的功能等。该系统采用了Mysql数据库,Java语言,Spring Boot框架等技术进行编程实现。 大学生就业服务平台管理系统可以提高大学生就业服务平台信息管理问题的解决效率,优化大学生就业服务平台信息处理流程,保证大学生就业服务平台信息数据的安全,它是一个非常可靠,非常安全的应用程序。 管理员权限操作的功能包括管理新闻信息,管理大学生就业服务平台信息,包括考试管理,培训管理,投递管理,薪资管理等,可以管理新闻信息。 考试管理界面,管理员在考试管理界面中可以对界面中显示,可以对考试信息的考试状态进行查看,可以添加新的考试信息等。投递管理界面,管理员在投递管理界面中查看投递种类信息,投递描述信息,新增投递信息等。新闻信息管理界面,管理员在新闻信息管理界面中新增新闻信息,可以删除新闻信息。新闻信息类型管理界面,管理员在新闻信息类型管理界面查看新闻信息的工作状态,可以对新闻信息的数据进行导出,可以添加新新闻信息的信息,可以编辑新闻信息信息,删除新闻信息信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值