前言:
如果需要用YOLOv8训练自己的数据集,首先需要使用标记软件,如labelme,labelimg等对图像进行标注,jpg/tif或其他图像格式标注后会转换为yolo格式或coco格式。(yolo对数据集有自己的规定,目标检测和实例分割的要求各不相同)。
实验环境:
操作系统:Ubuntu 20.04
编程语言:Python 3.8
深度学习框架:PyTorch 1.8
GPU:NVIDIA GeForce RTX 4090
使用labelme标记软件进行标记
下载安装教程链接点击此处
在终端中打开labelme不知道是不是linux系统的缘故,我的labelme不能选择是yolo格式还是coco格式,标记后自动转化为.json文件,而YOLO仅支持txt格式,所以需要脚本转化文件。
转换脚本
标注后的json文件格式为:
目标检测需要的txt文件格式为
数据集目录为(一定要按照格式来!data.yaml后文有讲)
/project-root/
├── train.py
├── data.yaml
└── dataset/
├── images/
│ ├── train/
│ │ ├── img1.jpg
│ ├── val/
│ │ ├── img1.jpg
│ └── test/ (可选,仅推理使用)
├── labels/
│ ├── train/
│ ├── val/
│ │ ├── img1.txt
│ └── test/ (可选&#