yolov8训练自己的数据集进行目标检测/实例分割(2)

前言:

如果需要用YOLOv8训练自己的数据集,首先需要使用标记软件,如labelme,labelimg等对图像进行标注,jpg/tif或其他图像格式标注后会转换为yolo格式或coco格式。(yolo对数据集有自己的规定,目标检测和实例分割的要求各不相同)。

实验环境:

操作系统:Ubuntu 20.04

编程语言:Python 3.8

深度学习框架:PyTorch 1.8

GPU:NVIDIA GeForce RTX 4090

使用labelme标记软件进行标记

下载安装教程链接点击此处

在终端中打开labelme不知道是不是linux系统的缘故,我的labelme不能选择是yolo格式还是coco格式,标记后自动转化为.json文件,而YOLO仅支持txt格式,所以需要脚本转化文件。

转换脚本

标注后的json文件格式为:

目标检测需要的txt文件格式为

数据集目录为(一定要按照格式来!data.yaml后文有讲)

/project-root/
├── train.py
├── data.yaml
└── dataset/
├── images/
│   ├── train/
│   │   ├── img1.jpg
│   ├── val/
│   │   ├── img1.jpg
│   └── test/ (可选,仅推理使用)
├── labels/
│   ├── train/
│   ├── val/
│   │   ├── img1.txt
│   └── test/ (可选&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值