Transformer网络架构

前言

Transformer由论文《Attention is all you need》提出。Transformer 体系结构擅长处理本质上是 Sequences 的文本数据。它们将文本序列作为输入,并生成另一个文本序列作为输出。例如。将输入的英语句子翻译成西班牙语。

Transformer整体架构

首先介绍 Transformer 的整体结构,下图是 Transformer 用于中英文翻译的整体结构:

​ 

我们可以看到 Transformer 架构由 Encoder 和 Decoder 两个部分组成,Encoder 和 Decoder 都包含 6 个 block(可自定义个数)。Transformer 的工作流程大体如下:

第一步:获取输入句子的每一个单词的表示向量 X由单词的 Embedding(Embedding就是从原始数据提取出来的Feature) 和单词位置的 Embedding 相加得到。

​ 

 第二步:将得到的单词表示向量矩阵 (如上图所示,每一行是一个单词的表示 x) 传入 Encoder 中,经过 6 个 Encoder block 后可以得到句子所有单词的编码信息矩阵 C,如下图。单词向量矩阵用 Xn×d 表示, n 是句子中单词个数,d 是表示向量的维度 (论文中 d=512)。每一个 Encoder block 输出的矩阵维度与输入完全一致。

第三步:将 Encoder 输出的编码信息矩阵 C传递到 Decoder 中,Decoder 依次会根据当前翻译过的单词 1~ i 翻译下一个单词 i+1,如下图所示。在使用的过程中,翻译到单词 i+1 的时候需要通过 Mask (掩盖) 操作遮盖住 i+1 之后的单词。 

上图 Decoder 接收了 Encoder 的编码矩阵 C,然后首先输入一个翻译开始符 "<Begin>",预测第一个单词 "I";然后输入翻译开始符 "<Begin>" 和单词 "I",预测单词 "have",以此类推。这是 Transformer 使用时候的大致流程,接下来是里面各个部分的细节。 

Transformer的输入

Transformer 中单词的输入表示 x单词 Embedding 和位置 Embedding (Positional Encoding)相加得到。

单词 Embedding

单词的 Embedding 有很多种方式可以获取,例如可以采用 Word2Vec、Glove 等算法预训练得到,也可以在 Transformer 中训练得到。

 位置 Embedding

Transformer 中除了单词的 Embedding,还需要使用位置 Embedding 表示单词出现在句子中的位置。因为 Transformer 不采用 RNN 的结构,而是使用全局信息,不能利用单词的顺序信息,而这部分信息对于 NLP 来说非常重要。所以 Transformer 中使用位置 Embedding 保存单词在序列中的相对或绝对位置。

位置 Embedding 用 PE表示,PE 的维度与单词 Embedding 是一样的。PE 可以通过训练得到,也可以使用某种公式计算得到。在 Transformer 中采用了后者,计算公式如下:

其中,pos 表示单词在句子中的位置,d 表示 PE的维度 (与词 Embedding 一样),2i 表示偶数的维度,2i+1 表示奇数维度 (即 2i≤d, 2i+1≤d)。使用这种公式计算 PE 有以下的好处:

  • 使 PE 能够适应比训练集里面所有句子更长的句子,假设训练集里面最长的句子是有 20 个单词,突然来了一个长度为 21 的句子,则使用公式计算的方法可以计算出第 21 位的 Embedding。
  • 可以让模型容易地计算出相对位置,对于固定长度的间距 k,PE(pos+k) 可以用 PE(pos) 计算得到。因为 Sin(A+B) = Sin(A)Cos(B) + Cos(A)Sin(B), Cos(A+B) = Cos(A)Cos(B) - Sin(A)Sin(B)。

将单词的词 Embedding 和位置 Embedding 相加,就可以得到单词的表示向量 x就是 Transformer 的输入。

Transformer重要组成部件

Self-Attention(自注意机制)

上图是论文中 Transformer 的内部结构图,左侧为 Encoder block,右侧为 Decoder block。红色圈中的部分为 Multi-Head Attention,是由多个 Self-Attention组成的,可以看到 Encoder block 包含一个 Multi-Head Attention,而 Decoder block 包含两个 Multi-Head Attention (其中有一个用到 Masked)。Multi-Head Attention 上方还包括一个 Add & Norm 层,Add 表示残差连接 (Residual Connection) 用于防止网络退化,Norm 表示 Layer Normalization,用于对每一层的激活值进行归一化。

因为 Self-Attention是 Transformer 的重点,所以我们重点关注 Multi-Head Attention 以及 Self-Attention,首先详细了解一下 Self-Attention 的内部逻辑。

Self-Attention 结构

上图是 Self-Attention 的结构,在计算的时候需要用到矩阵Q(查询),K(键值),V(值)。在实际中,Self-Attention 接收的是输入(单词的表示向量x组成的矩阵X) 或者上一个 Encoder block 的输出。而Q,K,V正是通过 Self-Attention 的输入进行线性变换得到的。

Q, K, V 的计算

Self-Attention 的输入用矩阵X进行表示,则可以使用线性变阵矩阵WQ,WK,WV计算得到Q,K,V。计算如下图所示,注意 X, Q, K, V 的每一行都表示一个单词。

得到矩阵 Q, K, V之后就可以计算出 Self-Attention 的输出了,计算的公式如下: 

公式中计算矩阵QK每一行向量的内积,为了防止内积过大,因此除以 dk 的平方根。Q乘以K的转置后,得到的矩阵行列数都为 n,n 为句子单词数,这个矩阵可以表示单词之间的 attention 强度。下图为Q乘以 KT ,1234 表示的是句子中的单词。

Q乘以K的转置的计算

得到QKT 之后,使用 Softmax 计算每一个单词对于其他单词的 attention 系数,公式中的 Softmax 是对矩阵的每一行进行 Softmax,即每一行的和都变为 1.

对矩阵的每一行进行 Softmax

得到 Softmax 矩阵之后可以和V相乘,得到最终的输出Z

Self-Attention 输出

上图中 Softmax 矩阵的第 1 行表示单词 1 与其他所有单词的 attention 系数,最终单词 1 的输出 Z1 等于所有单词 i 的值 Vi 根据 attention 系数的比例加在一起得到,如下图所示:

Zi 的计算方法

Multi-Head Attention 

在上一步,我们已经知道怎么通过 Self-Attention 计算得到输出矩阵 Z,而 Multi-Head Attention 是由多个 Self-Attention 组合形成的,下图是论文中 Multi-Head Attention 的结构图。

从上图可以看到 Multi-Head Attention 包含多个 Self-Attention 层,首先将输入X分别传递到 h 个不同的 Self-Attention 中,计算得到 h 个输出矩阵Z。下图是 h=8 时候的情况,此时会得到 8 个输出矩阵Z

得到 8 个输出矩阵 Z1 到 Z8 之后,Multi-Head Attention 将它们拼接在一起 (Concat),然后传入一个Linear层,得到 Multi-Head Attention 最终的输出Z

Encoder(编码器)

上图红色部分是 Transformer 的 Encoder block 结构,可以看到是由 Multi-Head Attention, Add & Norm, Feed Forward, Add & Norm 组成的。刚刚已经了解了 Multi-Head Attention 的计算过程,现在了解一下 Add & Norm 和 Feed Forward 部分。

4.1 Add & Norm

Add & Norm 层由 Add 和 Norm 两部分组成,其计算公式如下:

Add &amp;amp;amp;amp;amp; Norm 公式

其中 X表示 Multi-Head Attention 或者 Feed Forward 的输入,MultiHeadAttention(X) 和 FeedForward(X) 表示输出 (输出与输入 维度是一样的,所以可以相加)。

Add指 X+MultiHeadAttention(X),是一种残差连接,通常用于解决多层网络训练的问题,可以让网络只关注当前差异的部分,在 ResNet 中经常用到:

残差连接

Norm指 Layer Normalization,通常用于 RNN 结构,Layer Normalization 会将每一层神经元的输入都转成均值方差都一样的,这样可以加快收敛。

4.2 Feed Forward

Feed Forward 层比较简单,是一个两层的全连接层,第一层的激活函数为 Relu,第二层不使用激活函数,对应的公式如下。

Feed Forward

X是输入,Feed Forward 最终得到的输出矩阵的维度与X一致。

4.3 组成 Encoder

通过上面描述的 Multi-Head Attention, Feed Forward, Add & Norm 就可以构造出一个 Encoder block,Encoder block 接收输入矩阵 X(n×d) ,并输出一个矩阵 O(n×d) 。通过多个 Encoder block 叠加就可以组成 Encoder。

第一个 Encoder block 的输入为句子单词的表示向量矩阵,后续 Encoder block 的输入是前一个 Encoder block 的输出,最后一个 Encoder block 输出的矩阵就是编码信息矩阵 C,这一矩阵后续会用到 Decoder 中。

 

Decoder(解码器)

上图红色部分为 Transformer 的 Decoder block 结构,与 Encoder block 相似,但是存在一些区别:

  • 包含两个 Multi-Head Attention 层。
  • 第一个 Multi-Head Attention 层采用了 Masked 操作。
  • 第二个 Multi-Head Attention 层的K, V矩阵使用 Encoder 的编码信息矩阵C进行计算,而Q使用上一个 Decoder block 的输出计算。
  • 最后有一个 Softmax 层计算下一个翻译单词的概率。

 第一个 Multi-Head Attention

Decoder block 的第一个 Multi-Head Attention 采用了 Masked 操作,因为在翻译的过程中是顺序翻译的,即翻译完第 i 个单词,才可以翻译第 i+1 个单词。通过 Masked 操作可以防止第 i 个单词知道 i+1 个单词之后的信息。下面以 "我有一只猫" 翻译成 "I have a cat" 为例,了解一下 Masked 操作。

下面的描述中使用了类似 Teacher Forcing 的概念,不熟悉 Teacher Forcing 的童鞋可以参考以下上一篇文章Seq2Seq 模型详解。在 Decoder 的时候,是需要根据之前的翻译,求解当前最有可能的翻译,如下图所示。首先根据输入 "<Begin>" 预测出第一个单词为 "I",然后根据输入 "<Begin> I" 预测下一个单词 "have"。

Decoder 预测

Decoder 可以在训练的过程中使用 Teacher Forcing 并且并行化训练,即将正确的单词序列 (<Begin> I have a cat) 和对应输出 (I have a cat <end>) 传递到 Decoder。那么在预测第 i 个输出时,就要将第 i+1 之后的单词掩盖住,注意 Mask 操作是在 Self-Attention 的 Softmax 之前使用的,下面用 0 1 2 3 4 5 分别表示 "<Begin> I have a cat <end>"。

第一步:是 Decoder 的输入矩阵和 Mask 矩阵,输入矩阵包含 "<Begin> I have a cat" (0, 1, 2, 3, 4) 五个单词的表示向量,Mask 是一个 5×5 的矩阵。在 Mask 可以发现单词 0 只能使用单词 0 的信息,而单词 1 可以使用单词 0, 1 的信息,即只能使用之前的信息。

输入矩阵与 Mask 矩阵

第二步:接下来的操作和之前的 Self-Attention 一样,通过输入矩阵X计算得到Q,K,V矩阵。然后计算Q和 KT 的乘积 QKT 。

Q乘以K的转置

第三步:在得到 QKT 之后需要进行 Softmax,计算 attention score,我们在 Softmax 之前需要使用Mask矩阵遮挡住每一个单词之后的信息,遮挡操作如下:

Softmax 之前 Mask

得到 Mask QKT 之后在 Mask QKT上进行 Softmax,每一行的和都为 1。但是单词 0 在单词 1, 2, 3, 4 上的 attention score 都为 0。

第四步:使用 Mask QKT与矩阵 V相乘,得到输出 Z,则单词 1 的输出向量 Z1 是只包含单词 1 信息的。

Mask 之后的输出

第五步:通过上述步骤就可以得到一个 Mask Self-Attention 的输出矩阵 Zi ,然后和 Encoder 类似,通过 Multi-Head Attention 拼接多个输出Zi 然后计算得到第一个 Multi-Head Attention 的输出ZZ与输入X维度一样。

第二个 Multi-Head Attention

Decoder block 第二个 Multi-Head Attention 变化不大, 主要的区别在于其中 Self-Attention 的 K, V矩阵不是使用 上一个 Decoder block 的输出计算的,而是使用 Encoder 的编码信息矩阵 C 计算的。

根据 Encoder 的输出 C计算得到 K, V,根据上一个 Decoder block 的输出 Z 计算 Q (如果是第一个 Decoder block 则使用输入矩阵 X 进行计算),后续的计算方法与之前描述的一致。

这样做的好处是在 Decoder 的时候,每一位单词都可以利用到 Encoder 所有单词的信息 (这些信息无需 Mask)。

Softmax 预测输出单词

Decoder block 最后的部分是利用 Softmax 预测下一个单词,在之前的网络层我们可以得到一个最终的输出 Z,因为 Mask 的存在,使得单词 0 的输出 Z0 只包含单词 0 的信息,如下:

Decoder Softmax 之前的 Z

Softmax 根据输出矩阵的每一行预测下一个单词:

Decoder Softmax 预测

这就是 Decoder block 的定义,与 Encoder 一样,Decoder 是由多个 Decoder block 组合而成。

 

Transformer的训练与推理

Transformer 在训练期间和执行推理时的工作方式略有不同。

Training

我们首先看一下 Training 期间的数据流。训练数据由两部分组成:

  • 源序列或输入序列(例如。英文的 “You are welcome” (不客气),用于翻译问题)
  • 目标序列或目标序列(例如。西班牙语中的“De nada”)

Transformer 的目标是学习如何使用 input 和 target sequence 来输出 target sequence。

Transformer 按如下方式处理数据:

  1. 输入序列被转换为 Embeddings(使用 Position Encoding)并馈送到 Encoder。
  2. Encoders 堆栈对此进行处理,并生成 input sequence 的编码表示。
  3. 目标序列前面有一个句首标记,转换为 Embeddings(使用 Position Encoding),并馈送到 Decoder。
  4. Decoders 堆栈将其与 Encoder 堆栈的编码表示一起处理,以生成目标序列的编码表示。
  5. Output 层将其转换为单词概率和最终输出序列。
  6. Transformer 的 Loss 函数将此输出序列与训练数据中的目标序列进行比较。这个损失用于生成梯度,以便在反向传播期间训练 Transformer。

Inference

在 Inference 期间,我们只有输入序列,没有目标序列作为输入传递给 Decoder。Transformer 的目标是仅从 input 序列生成目标序列。

因此,就像在 Seq2Seq 模型中一样,我们在循环中生成输出,并将上一个时间步的输出序列馈送到下一个时间步的 Decoder,直到我们遇到句尾标记。

与 Seq2Seq 模型的不同之处在于,在每个时间步长,我们都会重新馈送迄今为止生成的整个输出序列,而不仅仅是最后一个单词。

推理期间的数据流为:

  1. 输入序列被转换为 Embeddings(使用 Position Encoding)并馈送到 Encoder。
  2. Encoders 堆栈对此进行处理,并生成 input sequence 的编码表示。
  3. 我们使用一个空序列,而不是目标序列,它只有一个句子开头标记。这被转换为 Embeddings(使用 Position Encoding)并馈送到 Decoder。
  4. Decoders 堆栈将其与 Encoder 堆栈的编码表示一起处理,以生成目标序列的编码表示。
  5. Output 层将其转换为单词概率并生成输出序列。
  6. 我们将输出序列的最后一个单词作为预测单词。该单词现在填充到 Decoder 输入序列的第二个位置,该序列现在包含一个句子开始标记和第一个单词。
  7. 返回步骤 #3。和以前一样,将新的 Decoder 序列馈送到模型中。然后获取输出的第二个字并将其附加到 Decoder 序列。重复此操作,直到它预测句尾标记。请注意,由于 Encoder 序列不会在每次迭代中发生变化,因此我们不必每次都重复步骤 #1 和 #2(感谢 Michal Kučírka 指出这一点)。

Transformer总结 

第一次看Transformer的架构,我是有点看不懂的,在查阅大量资料之后对于Transformer的认识会变得越来越清晰,以下是最近阅读Transformer相关文章的总结

  • Transformer可以比较好进行并行训练(相对于RNN和LSTM)
  • Transformer 架构本身不能利用单词的原有顺序信息,需要在输入中添加位置 Embedding,否则 Transformer 就是一个词袋模型了。
  • Transformer 的重点是 Self-Attention 结构,其中用到的 Q, K, V矩阵通过输出进行线性变换得到。
  • Transformer 中 Multi-Head Attention 中有多个 Self-Attention,可以捕获单词之间多种维度上的相关系数 attention score。

参考

如果不是很了解transformer架构,还是有很多疑惑,请静下心来阅读下面提供的博文,一定会大有收获。

论文链接:https://arxiv.org/pdf/1706.03762.pdf

经典网络架构学习-Transformer

手把手教你用Pytorch代码实现Transformer模型(超详细的代码解读)

Self-Attention和Transformer

Transformers Explained Visually (Part 1): Overview of Functionality

Learn-NLP-with-Transformers

Transformer模型详解(图解最完整版)

The Annotated Transformer

TRANSFORMERS FROM SCRATCH

Seq2seq pay Attention to Self Attention: Part 2(中文版)torch.nn.Transformer

  • 14
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Transformer 神经网络架构有很多种,以下是其中几种常见的神经网络架构: 1. 循环神经网络(Recurrent Neural Network,RNN):RNN 是一种经典的神经网络架构,它通过在网络中引入循环连接来处理序列数据。RNN 在处理序列数据时具有记忆能力,可以捕捉到序列中的上下文信息。 2. 卷积神经网络(Convolutional Neural Network,CNN):CNN 是一种主要用于图像处理的神经网络架构,它通过卷积操作来提取图像中的特征。CNN 在处理图像数据时具有平移不变性和局部感知性,适用于图像分类、目标检测等任务。 3. 深度信念网络(Deep Belief Network,DBN):DBN 是一种由多个受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)组成的深度神经网络。DBN 在无监督学习中表现出色,可以用于特征学习和生成模型等任务。 4. 自编码器(Autoencoder):自编码器是一种无监督学习的神经网络架构,它通过将输入数据编码为低维表示,再将低维表示解码为重构数据,从而学习到输入数据的特征表示。自编码器常用于降维、特征提取等任务。 5. 深度强化学习网络(Deep Reinforcement Learning Network,DRLN):DRLN 是一种结合了深度学习和强化学习的神经网络架构,用于解决具有延迟奖励的决策问题。DRLN 在游戏、机器人控制等领域取得了显著的成果。 这些非 Transformer 神经网络架构在不同的任务和领域中都有广泛的应用。它们各自具有不同的特点和适用范围,可以根据具体的需求选择合适的神经网络架构来解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值