频率引导的空间自适应网络:伪装物体检测的新突破

引言

在计算机视觉领域,伪装物体检测(Camouflaged Object Detection, COD)是一项极具挑战性的任务。这类物体往往与背景高度相似,如自然界中的保护色生物或军事伪装目标,传统方法在低对比度场景下难以准确分割。近年来,结合频域信息的方法显示出潜力,而大型视觉基础模型(如ViT、SAM)的兴起,为COD任务提供了新的研究方向。

本文解读西北工业大学团队发表在IEEE TMM上的工作《Frequency-Guided Spatial Adaptation for Camouflaged Object Detection》,作者提出FGSA-Net,通过频域引导的空间适应机制,在多个COD基准数据集上刷新SOTA记录,仅需调整7%参数即可高效适配预训练模型。


方法亮点
1. 频率引导的空间注意力(FGSAttn)

传统适配器仅关注空间域特征,而FGSA-Net的核心创新在于频域-空间域联合优化。具体流程如下:

  1. 频域分解:将空间特征通过FFT转换至频域,提取振幅谱(Amplitude Spectrum)和相位谱(Phase Spectrum)。
  2. 环形分组:在振幅谱上按半径划分非重叠圆环区域,每个区域代表不同频率成分(如低频轮廓、高频细节)。
  3. 动态增强:通过全局平均池化和全连接层生成权重,自适应增强关键频率成分,抑制噪声。
  4. 逆变换重构:将调整后的振幅谱与原始相位谱结合,经逆FFT生成空间注意力图,指导特征优化。

这一机制使模型能显式捕捉纹理差异,解决了空间域难以区分类似模式的问题。

2. 双模块协同架构
  • FBNM模块:插入预训练ViT的Patch Embedding层后,通过多尺度卷积和FGSAttn挖掘前景与背景的细微差异。
  • FBFE模块:嵌入ViT每K层后,融合基础模型的通用知识与适配器的任务特定知识,采用交叉注意力实现特征增强。

FGSAttn模块:


实验结果
1. 性能对比

在CHAMELEON、CAMO、COD10K、NC4K四个数据集上,FGSA-Net全面超越26种SOTA方法:

数据集Sα ↑Eϕ ↑Fβw ↑MAE ↓
COD10K-Test0.8930.9530.8490.015
NC4K0.9030.9510.8830.023

相比纯空间适配器(如SAM-Adapter),关键指标提升3%~6%,证明频域引导的有效性。

2. 泛化能力

在显著物体检测(SOD)任务中,FGSA-Net在ECSSD、DUTS等数据集上同样达到SOTA,MAE降低24%,展现强泛化性。

3. 效率分析
  • 参数量:仅引入59.9M可训练参数(ViT总参数的7%),远低于多数定制化COD模型。
  • 计算成本:输入分辨率512×512时,单张图像推理耗时仅增加15%,适合实际部署。

核心贡献总结
  1. 频域-空间联合适应:首次在适配器中引入频域分析,动态调整频率成分增强特征判别力。
  2. 轻量高效:通过双模块设计,以极小参数量实现预训练模型的高效迁移。
  3. 多任务泛化:在COD和SOD任务中均验证了方法的通用性,为低对比度分割提供新思路。

代码与资源
  • 论文地址:IEEE Xplore
  • 代码仓库:即将开源(关注作者GitHub更新)
  • 相关研究:FDNet、FBNet等频域COD方法对比

结语

FGSA-Net通过频域引导的空间适应机制,为伪装检测开辟了新方向。其结合预训练模型强大表征与频域细粒度分析的能力,值得在医疗影像、自动驾驶等领域进一步探索。期待后续工作在多模态输入、实时性优化等方面的突破!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值