↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑
A题是数模类赛事很常见的物理类赛题,需要学习不少相关知识。此题涉及对一个动态系统的建模,模拟一支舞龙队伍在螺旋路径中的行进,并求解队伍的整体动态行为。包括队伍的每秒位置、速度、碰撞检测、路径优化等问题。
这道题目主要涉及复杂的几何建模和动态模拟。队伍的行进路径需要通过螺旋曲线建模,且动态参数(速度、位置等)需要精确计算并避免碰撞。问题的限制条件较为明确,开放性一般,适合擅长几何建模和动力学仿真的同学。也就是物理学等相关专业的同学进行选择。在其中还涉及到了微分方程求解以及碰撞检测算法
这道题专业性较高,后续账号会在出本题具体思路分析时,再进行具体分析与建模。开放程度低,难度适中。但这类赛题通常门槛较高,小白/非相关专业同学谨慎选择。建议在最后对对答案,答案的正确与否会对最终成绩产生较大影响。建议物理、电气、自动化等相关专业选择。
问题 1
舞龙队沿螺距为 55 cm 的等距螺线顺时针盘入,给出从初始时刻到 300 s 为止,每秒整个舞龙队的位置和速度。
舞龙队沿螺距为55 cm的等距螺线顺时针盘入,各把手中心均位于螺线上。龙头前把手的行进速度始终保持1m/s。初始时,龙头位于螺线第16圈A点处(见图4)。请给出从初始时刻到300s为止,每秒整个舞龙队的位置和速度(指龙头、龙身和龙尾各前把手及龙尾后把手中心的位置和速度,下同),将结果保存到文件result1.xlsx中(模板文件见附件,其中“龙尾(后)”表示龙尾后把手,其余的均是前把手,结果保留6位小数,下同)。同时在论文中给出0 s、60 s、120 s、180 s、240 s、300 s 时,龙头前把手、龙头后面第1、51、101、151、201节龙身前把手和龙尾后把手的位置和速度(格式见表1和表2)。
解题思路:
1.建立螺线方程:螺线的极坐标方程为 r=a+bθr=a+bθ,其中 aa 和 bb 是常数,θθ 是角度。已知螺距为 55 cm,可以确定 bb。
2.初始位置:龙头初始位于螺线第 16 圈 A 点处,计算初始位置的极坐标 (r0,θ0)(r0,θ0)。
3.龙头运动:龙头前把手的行进速度为 1 m/s,计算每秒龙头的位置 (rt,θt)(rt,θt)。
4.龙身和龙尾:根据龙头的位置和速度,计算每节龙身和龙尾的位置和速度。注意板凳的长度和连接方式。
5.数据存储:将每秒的位置和速度数据保存到文件 result1.xlsx
中,并在论文中给出特定时刻的数据。
..................................................
2024国赛A题参考论文
https://download.csdn.net/download/qq_52590045/89718367
这道题目聚焦于生产过程的决策优化问题,需建立模型为一个生产企业设计最优的生产、检测和拆解策略。问题涉及到抽样检测、不合格率的控制、生产成本等因素的优化。需要一定的运筹学知识作支撑。
这道题是一个关于生产过程优化的典型问题,主要涉及决策的优化设计,包括零配件的检测、成品的组装与检测、不合格成品的处理等多个环节。问题通过给定的零配件次品率、检测成本和拆解费用等参数,要求建立一个能够最小化生产总成本或最大化生产效益的模型。这类问题在实际的生产管理中有广泛的应用,尤其是在质量管理与供应链决策优化方面。尤其需要关注运筹学的费用流方法、动态规划算法或者决策树算法。
这里就不再进行更细致的分析了,我们会在晚上发布相关具体思路,可以关注下。
这道题存在最优解,开放程度较高