1.实验数据
1.1 数据来源
本次实验的数据是由拍摄的众源数据集,是对学校内的道路场景,对于校内的 ”行人 ”,,”汽车 ”,”电动车 ”进行检测的数据集。
1.2 数据处理
需要对于数据进行标注,测试和研究等一系列操作,本步骤中将全部的整理的数据影像进行了分类总结,最后选取了 276张影像数据,276个 label标签,并且按照 8:1:1比例划分数据集,可以得到 222个训练数据, 26个验证数据, 28个测试数据,最后使用多个视频文件进行推理分析。
2 实验内容
2.1 实验步骤设计
2.2 实验操作
2.2.1 影像标注
使用图像标注工具labelimg ,可以快捷地对于图像中出现兴趣目标类别进行标注,定义输出格式为 YOLO 或者 PascalVOC 格式
2.2.2 图像训练
打开Anaconda Prompt ,然后切换环境为 [自己所设置的文件夹] 并且 cd 到[自己的文件夹]这里以sicisp 2023为例 ,文件夹下使用如下命令开始训练数据集:
<