动态规划(整理代码随想录)

文章详细介绍了动态规划在解决背包问题中的应用,包括01背包、完全背包和多重背包。01背包中,物品只能选取一次,递推公式为dp[j]=max(dp[j],dp[j-weight[i]]+value[i])。完全背包允许每件物品无限次选取,需按物品重量从小到大遍历。多重背包则考虑了每种物品的最大数量限制,可通过预处理转化为01背包问题。
摘要由CSDN通过智能技术生成
1.   基本步骤
  • 确定数组dp及其下标含义
  • 确定递推公式
  • 对dp数组进行初始化
  • 确定遍历顺序(先遍历物品,再遍历背包,其中使用一滚动数组遍历背包一般都是倒序遍历,以保证每个物品仅被添加一次)
  • 举例推导dp数组
2.   01背包

        有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] ,求解将哪些物品装入背包里物品价值总和最大。

组合问题(求装满背包的几种方法)的递推公式:

dp[j] += dp[j - nums[i]];

01背包的递推公式:

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
3.    完全背包

        有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。所以,完全背包的物品是可以添加多次的,所以背包要从小到大去遍历。

        如果求组合数就是外层for循环遍历物品,内层for遍历背包。

        如果求排列数就是外层for遍历背包,内层for循环遍历物品。

4.  多重背包

        有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。

要点:每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题。所以只需在预处理时,将其摊开即可。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值