1. 基本步骤
- 确定数组dp及其下标含义
- 确定递推公式
- 对dp数组进行初始化
- 确定遍历顺序(先遍历物品,再遍历背包,其中使用一滚动数组遍历背包一般都是倒序遍历,以保证每个物品仅被添加一次)
- 举例推导dp数组
2. 01背包
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] ,求解将哪些物品装入背包里物品价值总和最大。
组合问题(求装满背包的几种方法)的递推公式:
dp[j] += dp[j - nums[i]];
01背包的递推公式:
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
3. 完全背包
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。所以,完全背包的物品是可以添加多次的,所以背包要从小到大去遍历。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
4. 多重背包
有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。
要点:每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题。所以只需在预处理时,将其摊开即可。