文章目录
插值与拟合
插值概念与基础理论
插值问题的提法
给定函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上的 n + 1 n+1 n+1 个函数值:
x x 0 x 1 ⋯ x n f ( x ) f ( x 0 ) f ( x 1 ) ⋯ f ( x n ) \begin{array}{c|ccccc}x & x_0 & x_1 & \cdots & x_n\\ \hline f(x) & f(x_0) & f(x_1) & \cdots & f(x_n)\end{array} xf(x)x0f(x0)x1f(x1)⋯⋯xnf(xn)
x 0 , x 1 , ⋯ , x n x_0,x_1,\cdots,x_n x0,x1,⋯,xn 互不相同。 Φ \Phi Φ 为给定的某一个函数类。若 Φ \Phi Φ 上有函数 φ ( x ) \varphi(x) φ(x),满足
φ ( x i ) = f ( x i ) , i = 0 , 1 , 2 , ⋯ , n \varphi(x_i)=f(x_i),i=0,1,2,\cdots,n φ(xi)=f(xi),i=0,1,2,⋯,n
则称 φ ( x ) \varphi(x) φ(x) 为 f ( x ) f(x) f(x) 关于结点 x 0 , x 1 , ⋯ , x n x_0,x_1,\cdots,x_n x0,x1,⋯,xn 在 Φ \Phi Φ 上的插值函数, x 0 , x 1 , ⋯ , x n x_0,x_1,\cdots,x_n x0,x1,⋯,xn 称为插值结点, [ a , b ] [a,b] [a,b] 称为插值区间, f ( x ) f(x) f(x) 称为被插函数。
根据插值定义,插值函数实际上是一条经过平面上点 ( x i , f ( x i ) ) i = 0 , 1 , ⋯ , n (x_i,f(x_i))_{i=0,1,\cdots,n} (xi,f(xi))i=0,1,⋯,n 的曲线,这条平面曲线函数,就可以作为 f ( x ) f(x) f(x) 的逼近函数。
插值函数的存在唯一性:插值函数类 Φ \Phi Φ 为一个函数空间,若插值结点数为 n + 1 n+1 n+1,实际上给出了 n + 1 n+1 n+1 个限制条件,为了保证插值函数的存在唯一性,给出的插值函数空间应是 n + 1 n+1 n+1 维的,即 d i m Φ = n + 1 dim\Phi=n+1 dimΦ=n+1。
任取 Φ \Phi Φ 上 n + 1 n+1 n+1 个线性无关函数 φ 0 ( x ) , φ 1 ( x ) , ⋯ , φ n ( x ) \varphi_0(x),\varphi_1(x),\cdots,\varphi_n(x) φ0(x),φ1(x),⋯,φn(x),它们可作为 Φ \Phi Φ 的一组基,记为:
Φ = s p a n { φ 0 ( x ) , φ 1 ( x ) , ⋯ , φ n ( x ) } \Phi=span\{\varphi_0(x),\varphi_1(x),\cdots,\varphi_n(x)\} Φ=span{
φ0(x),φ1(x),⋯,φn(x)}
于是,任取 φ ( x ) ∈ Φ \varphi(x)\in\Phi φ(x)∈Φ,则 φ ( x ) \varphi(x) φ(x) 可唯一地表为:
φ ( x ) = a 0 φ 0 ( x ) + a 1 φ 1 ( x ) + ⋯ + a n φ n ( x ) \varphi(x)=a_0\varphi_0(x)+a_1\varphi_1(x)+\cdots+a_n\varphi_n(x) φ(x)=a0φ0(x)+a1φ1(x)+⋯+anφn(x)
这里 ( a 0 , a 1 , ⋯ , a n ) (a_0,a_1,\cdots,a_n) (a0,a1,⋯,an) 称之为 φ ( x ) \varphi(x) φ(x) 在基 { φ i ( x ) } i = 1 n \{\varphi_i(x)\}^n_{i=1} {
φi(x)}i=1n 下的坐标。
(*)定理: { x i } i = 0 n \{x_i\}^n_{i=0} { xi}i=0n 为 [ a , b ] [a,b] [a,b] 上 n + 1 n+1 n+1 个互异点, Φ = s p a n { φ 0 ( x ) , φ 1 ( x ) , ⋯ , φ n ( x ) } \Phi=span\{\varphi_0(x),\varphi_1(x),\cdots,\varphi_n(x)\} Φ=span{ φ0(x),φ1(x),⋯,φn(x)} 为 n + 1 n+1 n+1 维函数空间,定义在 [ a , b ] [a,b] [a,b] 上的函数 f ( x ) f(x) f(x) 关于结点 { x i } i = 0 n \{x_i\}^n_{i=0} { xi}i=0n 在 Φ \Phi Φ 上的插值函数存在且唯一的充要条件为行列式:
∣ φ 0 ( x 0 ) φ 1 ( x 0 ) ⋯ φ n ( x 0 ) φ 0 ( x 1 ) φ 1 ( x 1 ) ⋯ φ n ( x 1 ) ⋯ ⋯ φ 0 ( x n − 1 ) φ 1 ( x n − 1 ) ⋯ φ n ( x n − 1 ) φ 0 ( x n ) φ 1 ( x n ) ⋯ φ n ( x n ) ∣ ≠ 0 \left|\begin{matrix}\varphi_0(x_0) & \varphi_1(x_0) & \cdots & \varphi_n(x_0)\\\varphi_0(x_1) & \varphi_1(x_1) & \cdots & \varphi_n(x_1)\\&\cdots&\cdots\\\varphi_0(x_{n-1}) & \varphi_1(x_{n-1}) & \cdots & \varphi_n(x_{n-1})\\\varphi_0(x_n) & \varphi_1(x_n) & \cdots & \varphi_n(x_n)\end{matrix}\right|\neq0 ∣∣∣∣∣∣∣∣∣∣φ0(x0)φ0(x1)φ0(xn−1)φ0(xn)φ1(x0)φ1(x1)⋯φ1(xn−1)φ1(xn)⋯⋯⋯⋯⋯φn(x0)φn(x1)φn(xn−1)φn(xn)∣∣∣∣∣∣∣∣∣∣=0
插值多项式的存在唯一性
记 P n = { a 0 + a 1 x + ⋯ + a n x n ∣ a i ∈ R } P_n=\{a_0+a_1x+\cdots+a_nx^n|a_i\in R\} Pn={ a0+a1x+⋯+anxn∣ai∈R},则 P n P_n Pn 为一个 n + 1 n+1 n+1 维的线性空间( n n n 次多项式空间)。
若 { x i } i = 0 n \{x_i\}^n_{i=0} { xi}i=0n 为 [ a , b ] [a,b] [a,b] 上互异点, f ( x ) f(x) f(x) 为定义在 [ a , b ] [a,b] [a,b] 上的函数,若有 P n ( x ) ∈ P n P_n(x)\in P_n Pn(x)∈Pn,满足 P n ( x i ) = f ( x i ) , i = 0 , 1 , ⋯ , n P_n(x_i)=f(x_i),i=0,1,\cdots,n Pn(xi)=f(xi),i=0,1,⋯,n,则称 P n ( x ) P_n(x) Pn(x) 为 f ( x ) f(x) f(x) 关于结点 { x i } i = 0 n \{x_i\}^n_{i=0} { xi}i=0n 的 n n n 次插值多项式。
定理1: f ( x ) f(x) f(x) 关于 n + 1 n+1 n+1 个互异结点 { x i } i = 0 n \{x_i\}^n_{i=0} { xi}i=0n 的 n n n 次插值多项式存在且唯一。
证明:设插值多项式: P n ( x ) = a 0 + a 1 x + ⋯ + a n x n P_n(x)=a_0+a_1x+\cdots+a_nx^n Pn(x)=a0+a1x+⋯+anxn,满足 a 0 + a 1 x i + ⋯ + a n x i n = f ( x i ) , i = 0 , 1 , ⋯ , n a_0+a_1x_i+\cdots+a_nx_i^n=f(x_i),i=0,1,\cdots,n a0+a1xi+⋯+anxin=f(xi),i=0,1,⋯,n,而
D = ∣ 1 x 0 x 0 2 ⋯ x 0 n 1 x 1 x 1 2 ⋯ x 1 n ⋮ ⋮ ⋮ ⋮ 1 x n x n 2 ⋯ x n n ∣ = ∏ n ≥ i > j ≥ 0 ( x i − x j ) ≠ 0 D=\left|\begin{matrix}1&x_0&x_0^2&\cdots&x_0^n\\1&x_1&x_1^2&\cdots&x_1^n\\\vdots&\vdots&\vdots&&\vdots\\1&x_n&x_n^2&\cdots&x_n^n\end{matrix}\right|=\prod_{n\geq i>j\geq0}(x_i-x_j)\neq0 D=∣∣∣∣∣∣∣∣∣11⋮1x0x1⋮xnx02x12⋮xn2⋯⋯⋯x0nx1n⋮xnn∣∣∣∣∣∣∣∣∣=n≥i>j≥0∏(xi−xj)=0
由克莱姆法则得 a 0 , a 1 , ⋯ , a n a_0,a_1,\cdots,a_n a0,a1,⋯,an 存在唯一,即 P n P_n Pn 上存在且唯一的有 P n ( x ) P_n(x) Pn(x),满足 P n ( x i ) = f ( x i ) , i = 0 , 1 , ⋯ , n P_n(x_i)=f(x_i),i=0,1,\cdots,n Pn(xi)=f(xi),i=0,1,⋯,n。同时, n n n 次插值多项式 P ( x ) P(x) P(x) 可表示为 P n ( x ) = a 0 + a 1 x + ⋯ + a n x n P_n(x)=a_0+a_1x+\cdots+a_nx^n Pn(x)=a0+a1x+⋯+anxn,其中 a i = D i D , i = 0 , 1 , 2 , ⋯ , n a_i=\frac{D_i}{D},i=0,1,2,\cdots,n ai=DDi,i=0,1,2,⋯,n。
D i = ∣ 1 x 0 ⋯ x 0 i − 1 f ( x 0 ) x 0 i + 1 ⋯ x 0 n 1 x 1 ⋯ x 1 i − 1 f ( x 1 ) x 1 i + 1 ⋯ x 1 n ⋯ ⋯ 1 x n ⋯ x n i − 1 f ( x n ) x n i + 1 ⋯ x n n ∣ D_i=\left|\begin{matrix}1&x_0&\cdots&x_0^{i-1}&f(x_0)&x_0^{i+1}&\cdots&x_0^n\\1&x_1&\cdots&x_1^{i-1}&f(x_1)&x_1^{i+1}&\cdots&x_1^n\\&&&\cdots&\cdots\\1&x_n&\cdots&x_n^{i-1}&f(x_n)&x_n^{i+1}&\cdots&x_n^n\end{matrix}\right| Di=∣∣∣∣∣∣∣∣111x0x1xn⋯⋯⋯x0i−1x1i−1⋯xni−1f(x0)f(x1)⋯f(xn)x0i+1x1i+1xni+1⋯⋯⋯x0nx1nxnn∣∣∣∣∣∣∣∣
插值余项
R n ( x ) = f ( x ) − P n ( x ) R_n(x)=f(x)-P_n(x) Rn(x)=f(x)−Pn(x) 称为插值余项(或称误差)。
定理2:若 f ∈ C n + 1 [ a , b ] f\in C^{n+1}[a,b] f∈Cn+1[a,b],互异点 { x i } i = 0 n ⊂ [ a , b ] \{x_i\}^n_{i=0}\subset[a,b] { xi}i=0n⊂[a,b],则 f ( x ) f(x) f(x) 以 { x i } i = 0 n \{x_i\}^n_{i=0} { xi}i=0n 为插值结点的 n n n 次插值多项式余项:
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x n ) 其 中 : m i n { x 0 , x 1 , ⋯ , x n , x } ≤ ξ = ξ ( x ) ≤ m a x { x 0 , x 1 , ⋯ , x n , x } R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)\\其中:min\{x_0,x_1,\cdots,x_n,x\}\leq\xi=\xi(x)\leq max\{x_0,x_1,\cdots,x_n,x\} Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)(x−x1)⋯(x−xn)其中:min{ x0,x1,⋯,xn,x}≤ξ=ξ(x)≤max{ x0,x1,⋯,xn,x}
推论: 若 f ( x ) ∈ C ( n + 1 ) [ a , b ] f(x)\in C^{(n+1)}[a,b] f(x)∈C(n+1)[a,b],且 ∣ f ( n + 1 ) ( x ) ∣ ≤ M n + 1 ( a ≤ x ≤ b ) |f^{(n+1)}(x)|\leq M_{n+1}(a\leq x\leq b) ∣f(n+1)(x)∣≤Mn+1(a≤x≤b),则 f ( x ) f(x) f(x) 以 { x i } i = 0 n \{x_i\}^n_{i=0} { xi}i=0n 为插值结点的 n n n 次插值多项式余项
∣ R n ( x ) ∣ ≤ M n + 1 ( n + 1 ) ! ∣ ω n + 1 ( x ) ∣ |R_n(x)|\leq\frac{M_{n+1}}{(n+1)!}|\omega_{n+1}(x)| ∣Rn(x)∣≤(n+1)!Mn+1∣ωn+1(x)∣
其中: ω n + 1 ( x ) = ∏ i = 0 n ( x − x i ) \omega_{n+1}(x)=\prod^n_{i=0}(x-x_i) ωn+1(x)=∏i=0n(x−xi)
注: 若插值点 x x x 位于插值区间 [ m i n 1 ≤ i ≤ n x i , m a x 1 ≤ i ≤ n x i ] [min_{1\leq i\leq n}x_i,max_{1\leq i\leq n}x_i] [min1≤i≤nxi,max1≤i≤nxi] 内,则该插值过程称为内插,否则称为外插。一般情况下,内插效果要比外插好一点,所以,插值结点尽可能选取在插值区间内。
插值多项式的求法
拉格朗日(Lagrange)型插值多项式
对于给定的 n + 1 n+1 n+1 个互异结点 { x i } i = 0 n \{x_i\}^n_{i=0} {
xi}i=0n,如果能找到 P n P_n Pn 上 n + 1 n+1 n+1 个多项式 { l i ( x ) } i = 0 n \{l_i(x)\}^n_{i=0} {
li(x)}i=0n,满足
l i ( x j ) = δ i j = { 1 , i = j 0 , i ≠ j , i , j = 0 , 1 , ⋯ , n l_i(x_j)=\delta_{ij}=\begin{cases}1,i=j\\0,i\neq j\end{cases},i,j=0,1,\cdots,n li(xj)=δij={
1,i=j0,i=j,i,j=0,1,⋯,n
那么 L n ( x ) = ∑ i = 0 n l i ( x ) f ( x i ) L_n(x)=\sum^n_{i=0}l_i(x)f(x_i) Ln(x)=∑i=0nli(x)f(xi) 就是 f ( x ) f(x) f(x) 关于结点 { x i } i = 0 n \{x_i\}^n_{i=0} {
xi}i=0n 的 n n n 次插值多项式。其中, { l i ( x ) } i = 0 n ⊂ P n \{l_i(x)\}^n_{i=0}\subset P_n {
li(x)}i=0n⊂Pn,有 ∑ i = 0 n l i ( x ) f ( x i ) ∈ P n \sum^n_{i=0}l_i(x)f(x_i)\in P_n ∑i=0nli(x)f(xi)∈Pn,且有
L n ( x k ) = ∑ i = 0 n l i ( x k ) f ( x i ) = f ( x k ) , k = 0 , 1 , ⋯ , n L_n(x_k)=\sum^n_{i=0}l_i(x_k)f(x_i)=f(x_k),k=0,1,\cdots,n Ln(xk)=i=0∑nli(xk)f(xi)=f(xk),k=0,1,⋯,n
l i ( x ) l_i(x) li(x) 的构造: l i ( x j ) = 0 ( j ≠ i ) l_i(x_j)=0(j\neq i) li(xj)=0(j=i):
l i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j = ( x − x 0 ) ⋯ ( x − x i − 1 ) ( x − x i + 1 ) ⋯ ( x − x n ) ( x i − x 0 ) ⋯ ( x i − x i − 1 ) ( x i − x i + 1 ) ⋯ ( x i − x n ) l_i(x)=\prod^n_{j=0,j\neq i}\frac{x-x_j}{x_i-x_j}=\frac{(x-x_0)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_n)} li(x)=j=0,j=i∏nxi−xjx−xj=(xi−x0)⋯(xi−xi−1)(xi−xi+1)⋯(xi−xn)(x−x0)⋯(x−xi−1)(x−xi+1)⋯(x−xn)
{ l i ( x ) } i = 0 n \{l_i(x)\}^n_{i=0} {
li(x)}i=0n 是一组线性无关的函数,可作为 P n P_n Pn 的一组基,称为关于结点 { x i } i = 0 n \{x_i\}^n_{i=0} {
xi}i=0n的Lagrange基,其插值多项式称为Lagrange型插值多项式,记为 L n ( x , f ) L_n(x,f) Ln(x,f) 或 L n ( x ) L_n(x) Ln(x),即
L n ( x ) = ∑ i = 0 n l i ( x ) f ( x i ) = ∑ i = 0 n ( ∏ j = 0 , j ≠ i n x − x j x i − x j ) f ( x i ) L_n(x)=\sum^n_{i=0}l_i(x)f(x_i)=\sum^n_{i=0}(\prod^n_{j=0,j\neq i}\frac{x-x_j}{x_i-x_j})f(x_i) Ln(x)=i=0∑nli(x)f(xi)=i=0∑n(j=0,j=i∏nxi−xjx−xj)f(xi)
记 ω n + 1 ( x ) = ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x n ) , ω n + 1 ′ ( x i ) = ∏ j = 0 , j ≠ i n ( x i − x j ) \omega_{n+1}(x)=(x-x_0)(x-x_1)\cdots(x-x_n),\omega'_{n+1}(x_i)=\prod^n_{j=0,j\neq i}(x_i-x_j) ωn+1(x)=(x−x0)(x−x1)⋯(x−xn),ωn+1′(xi)=∏j=0,j=in(xi−xj),得
l i ( x ) = ω n + 1 ( x ) ( x − x i ) ω n + 1 ′ ( x i ) L n ( x ) = ∑ i = 0 n ω n + 1 ( x ) ( x − x i ) ω n + 1 ′ ( x i ) f ( x i ) l_i(x)=\frac{\omega_{n+1}(x)}{(x-x_i)\omega'_{n+1}(x_i)}\\L_n(x)=\sum^n_{i=0}\frac{\omega_{n+1}(x)}{(x-x_i)\omega'_{n+1}(x_i)}f(x_i) li(x)=(x−xi)ωn+1′(xi)ωn+1(x)Ln(x)=i=0∑n(x−xi)ωn+1′(xi)ωn+1(x)f(xi)
当 n = 1 n=1 n=1 时,可得 f ( x ) f(x) f(x) 关于 x 0 , x 1 x_0,x_1 x0,x1 的线性插值多项式的Lagrange型式:
L 1 ( x ) = x − x 1 x 0 − x 1 f ( x 0 ) + x − x 0 x 1 − x 0 f ( x 1 ) L_1(x)=\frac{x-x_1}{x_0-x_1}f(x_0)+\frac{x-x_0}{x_1-x_0}f(x_1) L1(x)=x0−x1x−x1f(x0)+x1−x0x−x0f(x1)
当 n = 2 n=2 n=2 时,可得 f ( x ) f(x) f(x) 关于 x 0 , x 1 , x 2 x_0,x_1,x_2 x0,x1,x2 的线性插值多项式的Lagrange型式:
L 2 ( x ) = l 0 ( x ) f ( x 0 ) + l 1 ( x ) f ( x 1 ) + l 2 f ( x 2 ) = ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) f ( x 0 ) + ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) f ( x 1 ) + ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) f ( x 2 ) L_2(x)=l_0(x)f(x_0)+l_1(x)f(x_1)+l_2f(x_2)\\=\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}f(x_0)+\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}f(x_1)+\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}f(x_2) L2(x)=l0(x)f(x0)+l1(x)f(x1)+l2f(x2)=(x0−x1)(x0−x2)(x−x1)(x−x2)f(x0)+(x1−x0)(x1−x2)(x−x0)(x−x2)f(x1)+(x2−x0)(x2−x1)(x−x0)(x−x1)f(x2)
三点插值又称抛物插值。
误差的事后估计方法: 定理 2 给出了当被插函数充分光滑时的插值误差表达式,推论给出了误差的界。但在实际计算中,涉及到高价导数,很难给出较精确的估计,所以常用误差的事后估计。
记 L n ( x ) L_n(x) Ln(x) 为 f ( x ) f(x) f(x) 以 x 0 , x 1 , ⋯ , x n x_0,x_1,\cdots,x_n x0,x1,⋯,xn 为结点的插值多项式,对确定的 x x x,我们需要对误差 f ( x ) − L n ( x ) f(x)-L_n(x) f(x)−Ln(x) 做出估计。为此,另取一个结点 x n + 1 x_{n+1} xn+1,记 L n ( 1 ) ( x ) L^{(1)}_n(x) Ln(1)(x) 为 f ( x ) f(x) f(x) 以 x 1 , x 2 , ⋯ , x n , x n + 1 x_1,x_2,\cdots,x_n,x_{n+1} x1,x2,⋯,xn,xn+1 为结点的插值多项式,由定理2,可得到:
f ( x ) − L n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x n ) f ( x ) − L n ( 1 ) ( x ) = f ( n + 1 ) ( ξ 2 ) ( n + 1 ) ! ( x − x 1 ) ( x − x 2 ) ⋯ ( x − x n ) ( x − x n + 1 ) f(x)-L_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)\\f(x)-L^{(1)}_n(x)=\frac{f^{(n+1)}(\xi_2)}{(n+1)!}(x-x_1)(x-x_2)\cdots(x-x_n)(x-x_{n+1}) f(x)−Ln(x)=(n+1)!f(n+1)(ξ)(x−x0)(x−x1)⋯(x−xn)f(x)−Ln(1)(x)=(n+1)!f(n+1)(ξ2)(x−x1)(x−x2)⋯(x−xn)(x−xn+1)
若 f ( n + 1 ) ( x ) f^{(n+1)}(x) f(n+1)(x) 在插值区间上变化不大时,则:
f ( x ) − L n ( x ) f ( x ) − L n ( 1 ) ( x ) ≈ x − x 0 x − x n + 1 ( x − x n + 1 ) ( f ( x ) − L n ( x ) ) ≈ ( x − x 0 ) ( f ( x ) − L n ( 1 ) ( x ) ) f ( x ) ≈ x − x n + 1 x 0 − x n + 1 L n ( x ) + x − x 0 x n + 1 − x 0 L n ( 1 ) ( x ) 即 : f ( x ) − L n ( x ) ≈ x − x 0 x 0 − x n + 1 ( L n ( x ) − L n ( 1 ) ( x ) ) \frac{f(x)-L_n(x)}{f(x)-L^{(1)}_n(x)}\approx\frac{x-x_0}{x-x_{n+1}}\\(x-x_{n+1})(f(x)-L_n(x))\approx(x-x_0)(f(x)-L^{(1)}_n(x))\\f(x)\approx\frac{x-x_{n+1}}{x_0-x_{n+1}}L_n(x)+\frac{x-x_0}{x_{n+1}-x_0}L^{(1)}_n(x)\\即:f(x)-L_n(x)\approx\frac{x-x_0}{x_0-x_{n+1}}(L_n(x)-L^{(1)}_n(x)) f(x)−Ln(1)(x)f(x)−Ln(x)≈x−xn+1x−x0(x−xn+1)(f(x)−Ln(x))≈(x−x0)(f(x)−Ln(1)(x))f(x)≈x0−xn+1x−xn+1Ln(x)+xn+1−x0x−x0Ln(1)(x)即:f(x)−Ln(x)≈x0−xn+1x−x0(Ln(x)−Ln(1)(x))
上式较好地给出了插值误差的实际估计。
差商与牛顿基本插值多项式
对于给定的 n + 1 n+1 n+1 个结点 x 0 , x 1 , ⋯ , x n x_0,x_1,\cdots,x_n x0,x1,⋯,xn,考虑 n n n 次多项式: N n ( x ) = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) ( x − x 1 ) + ⋯ + a n ( x − x 0 ) ( x − x 1