第23章 跳跃-扩散模型的微笑曲线——介绍

文章探讨了证券价格中跳跃现象对波动率微笑曲线的影响,以及在跳跃-扩散模型中如何处理这一问题。跳跃导致短期期权斜度变陡,但在长期中影响减弱。虽然跳跃违反无套利风险中性定价原理,但模型仍假设其成立以简化定价。文章还介绍了纯跳跃模型,分析了跳跃对股票价格游走变量和波动率的影响,并讨论了风险中性条件下的期权定价方法。
摘要由CSDN通过智能技术生成

这学期会时不时更新一下伊曼纽尔·德曼(Emanuel Derman) 教授与迈克尔B.米勒(Michael B. Miller)的《The Volatility Smile》这本书,本意是协助导师课程需要,发在这里有意的朋友们可以学习一下,思路不一定够清晰且由于分工原因我是从书本第13章写起,还请大家见谅。

第23章 跳跃-扩散模型的微笑曲线——介绍

跳跃

大部分证券的价格并非随时间平缓扩散;它们的变动会出现突然的跳跃。股票和指数一定存在价格跳跃。外汇市场有时会出现价格跳跃。商品价格也会出现跳跃

跳跃通常是指在很短的时间内价格发生大幅变动。“很短的时间内“几乎都是指在一个交易日内;“大幅”指变动幅度相比 σ t \sigma\sqrt t σt 而言很大,也就是在这个时间段内的预期标准差。股票指数市场上很少出现非常大幅的跳跃现象(频率通常是好几年才会出现一次),但是一旦出现,会对经济、金融,尤其是心理造成非常重要的影响。在股票市场,价格跳跃大部分时候是大幅下跌,而个股价格既会向上跳跃也会向下跳跃

跳跃在解释微笑曲线的方面非常有吸引力,因为价格跳跃很容易导致短期负斜度曲线变陡峭且具有持续性,这恰是我们在股票指数市场中所观察到的

然而(从理论的角度看),跳跃违反了无套利风险中性定价原理,这是截至目前我们所有模型的基础。这是因为期权的标的资产价格可能会经历很多不同幅度的跳跃,而我们无法在每个瞬间都对这种期权进行对冲。相比风险中性定价原理,经济模型没有太大的吸引力,因为这类模型需要对行为进行深入研究后建模。为了避免这种情况,大部分跳跃-扩散模型在没有强有力说服力的前提下,仍然假设风险中性定价原理成立

跳跃对斜度影响的简析

假设,在当前时点 t = 0 t=0 t=0 到到期日 t = T t=T t=T 之间,指数水平一次性跳跃 J % J\% J% 的可能性为 p p p。现在,我们假设在这段时间之内要么有1次跳跃,要么没有跳跃。如果没有跳跃,波动率就是 σ 0 \sigma_0 σ0。下图粗略展示了在不同到期期限下,股票价格的概率分布情况

有两个因素会影响股票价格到期日分布情况,分别是扩散和跳跃。对数扩散下,到期日的标准差是 σ 0 τ \sigma_0\sqrt\tau σ0τ ,随着 τ = T − t \tau=T-t τ=Tt 的增加而增加,而在跳跃情况下,标准差总是保持不变的。到期期限较短时,跳跃会导致在扩散分布的尾部出现明显的凸起。随着到期期限不断增加,扩散分布标准差的相对值会增加,而跳跃对整体分布影响的重要性会越来越低。在对期权估值的时候,跳跃对到期期限较短的期权影响更明显,随着到期期限的增加,这种影响会逐渐降低直至可以忽略,因为连续扩散对分布的效果会覆盖跳跃的效果

上图展示的是上述情况对应的隐含波动率曲面,此处,为了简便,假设扩散波动率不存在期限结构(也就是说, σ 0 \sigma_0 σ0 不随时间的变化而变化)。注意,距离到期日较近的时候,微笑曲线的斜度非常高,但是期限较长时,微笑曲线就变得相对平坦。对指数期权而言,这并非是一个不切实际的波动率曲面,尤其是在到期期限较短的情况下。如果考虑了扩散波动率的期限结构,这个曲面还可以更接近实际情况

纯跳跃模型

现在,只对跳跃过程建模,并以此为基础,研究在实际中跳跃和扩散共同存在的情况

股价跳跃:校验与修正

上图展示的是在 Δ t \Delta t Δt 时间内,股价 S S S 的对数扩散过程离散二叉树形图

股价上行或者下行的概率是有限的,但是股价变动过程是可以趋近于无穷小的,按照系数 Δ t \sqrt{\Delta t} Δt 变动。在一个时间间隔区间内, ln ⁡ ( S S 0 ) \ln(\dfrac{S}{S_0}) ln(S0S) 的总方差就等于 σ 2 Δ t \sigma^2\Delta t σ2Δt,游走变量为 μ Δ t \mu\Delta t μΔt。相对应的连续时间过程就是 d ln ⁡ ( S ) = μ d t + σ d Z d\ln(S)=\mu dt+\sigma dZ dln(S)=μdt+σdZ,也就是:
d S S = ( μ + 1 2 σ 2 ) d t + σ d Z \frac{dS}{S}=(\mu+\frac{1}{2}\sigma^2)dt+\sigma dZ SdS=(μ+21σ2)dt+σdZ
在风险中性条件下,当无风险利率等于 r r r 时,我们需要调整离散过程,使得 μ = r − 1 2 σ 2 \mu=r-\frac{1}{2}\sigma^2 μ=r21σ2

跳跃本质上和扩散是不同的。上图展示的是在二叉树模型中的一个分叉上发生了跳跃。发生跳跃的概率很小,其系数是 Δ t \Delta t Δt,但是跳跃 J J J 的幅度可能会很大。这就是一个只有跳跃没有扩散的模型。如果我们令 J = 0 J=0 J=0,那么树形图中的上行分叉和下行分叉的游走变量都是一样的,均为 μ ′ \mu' μ。在这个模型中,时间间隔 Δ t \Delta t Δt 越长,出现跳跃的概率 λ Δ t \lambda\Delta t λΔt 也就越高

现在来看一下在这个过程中 ln ⁡ ( S / S 0 ) \ln(S/S_0) ln(S/S0) 的均值和方差。均值等于:
E [ ln ⁡ ( S S 0 ) ] = λ Δ t ( μ ′ Δ t + J ) + ( 1 − λ Δ t ) μ ′ Δ t = ( μ ′ + λ J ) Δ t E[\ln(\frac{S}{S_0})]=\lambda\Delta t(\mu'\Delta t+J)+(1-\lambda\Delta t)\mu'\Delta t =(\mu'+\lambda J)\Delta t E[ln(S0S)]=λΔt(μΔt+J)+(1λΔt)μΔt=(μ+λJ)Δt
方差等于:
v a r [ ln ⁡ ( S S 0 ) ] = λ Δ t [ μ ′ Δ t + J − ( μ ′ + λ J ) Δ t ] 2 + ( 1 − λ Δ t ) [ μ ′ Δ t − ( μ ′ + λ J ) Δ t ] 2 = λ Δ t [ J ( 1 − λ Δ t ) ] 2 + ( 1 − λ Δ t ) [ − λ J Δ t ] 2 = J 2 λ Δ t ( 1 − λ Δ t ) 2 + J 2 ( 1 − λ Δ t ) ( λ Δ t ) 2 = J 2 λ Δ t ( 1 − λ Δ t ) ( 1 − λ Δ t + λ Δ t ) = J 2 λ Δ t ( 1 − λ Δ t ) Δ t → 0 : lim ⁡ Δ t → 0 v a r [ ln ⁡ ( S S 0 ) ] = J 2 λ Δ t var[\ln(\frac{S}{S_0})]=\lambda\Delta t[\mu'\Delta t+J-(\mu'+\lambda J)\Delta t]^2+(1-\lambda\Delta t)[\mu'\Delta t-(\mu'+\lambda J)\Delta t]^2\\=\lambda\Delta t[J(1-\lambda \Delta t)]^2+(1-\lambda\Delta t)[-\lambda J\Delta t]^2\\=J^2\lambda\Delta t(1-\lambda \Delta t)^2+J^2(1-\lambda\Delta t)(\lambda\Delta t)^2\\=J^2\lambda\Delta t(1-\lambda \Delta t)(1-\lambda \Delta t+\lambda \Delta t)=J^2\lambda\Delta t(1-\lambda \Delta t)\\ \Delta t\to0:\lim_{\Delta t\to0}var[\ln(\frac{S}{S_0})]=J^2\lambda\Delta t var[ln(S0S)]=λΔt[μΔt+J(μ+λJ)Δt]2+(1λΔt)[μΔt(μ+λJ)Δt]2=λΔt[J(1λΔt)]2+(1λΔt)[λJΔt]2=J2λΔt(1λΔt)2+J2(1λΔt)(λΔt)2=J2λΔt(1λΔt)(1λΔt+λΔt)=J2λΔt(1λΔt)Δt0:Δt0limvar[ln(S0S)]=J2λΔt
因此,该过程的游走变量为 μ = ( μ ′ + λ J ) \mu=(\mu'+\lambda J) μ=(μ+λJ),得到的波动率为 σ = J λ \sigma=J\sqrt\lambda σ=Jλ

如果我们观察到某证券的对数游走变量为 μ \mu μ,波动率为 σ \sigma σ,那么我们可以根据如下关系式调整纯跳跃模型中的各参数:
J = σ λ μ ′ = μ − λ J = μ − λ σ J=\frac{\sigma}{\sqrt\lambda}\\ \mu'=\mu-\lambda J=\mu-\sqrt\lambda\sigma J=λ σμ=μλJ=μλ σ
给定了 μ , σ \mu,\sigma μ,σ 之后,就可以得到 J , μ ′ , λ J,\mu',\lambda J,μ,λ 的参数值。我们可以选择任意的 J J J 值,然后就可以确定 λ \lambda λ 值,反之亦然。在反复多次之后,上图中的过程就变成了近似于游走变量为 μ \mu μ,波动率为 σ \sigma σ 的证券

给定 J J J 之后,只有 λ \lambda λ 是未知变量,也就是每单位时间出现跳跃的概率。如果跳跃是向上的,那么 μ ′ \mu' μ 就会小于 μ \mu μ。如果跳跃是向下的,那么 μ ′ \mu' μ 就会大于 μ \mu μ。在不同情况下,我们需要根据跳跃的情况调整 μ ′ \mu' μ 值,保证加权平均回报等于 μ \mu μ。跳跃幅度越大,或者跳跃出现的概率越高,需要做出的调整也越大

股价 S S S 本身如何变动?与扩散过程一样,在跳跃模型中也需要调整股票价格的游走变量和波动率。在扩散过程中,这个调整需要用到伊藤调节项 1 2 σ 2 \dfrac{1}{2}\sigma^2 21σ2。与此相似,跳跃过程中也需要用到调节项,相关证明如下

上图展示了股票价格 S S S 的纯跳跃二叉树模型。在一个微小时间端 Δ t \Delta t Δt 之后,股票价格的期望值为:
E [ S ] = λ Δ t S e μ ′ Δ t + J + ( 1 − λ Δ t ) S e μ ′ Δ t = S e μ ′ Δ t [ 1 + λ ( e J − 1 ) Δ t ] ≈ S e ( μ ′ + λ ( e J − 1 ) ) Δ t E[S]=\lambda\Delta tSe^{\mu'\Delta t+J}+(1-\lambda\Delta t)Se^{\mu'\Delta t}\\=Se^{\mu'\Delta t}[1+\lambda(e^J-1)\Delta t]\\\approx Se^{(\mu'+\lambda(e^J-1))\Delta t} E[S]=λΔtSeμΔt+J+(1λΔt)SeμΔt=SeμΔt[1+λ(eJ1)Δt]Se(μ+λ(eJ1))Δt
如果我们在风险中性条件下进行估值,并令股票价格的增长率为 r r r,那么就有 r = μ ′ + λ ( e J − 1 ) r=\mu'+\lambda(e^J-1) r=μ+λ(eJ1),因此该流程在连续时间下就需要满足:
μ ′ = r − λ ( e J − 1 ) \mu'=r-\lambda(e^J-1) μ=rλ(eJ1)
在跳跃模型中,我们需要调整游走变量,使其等于无风险利率

在极限条件 Δ t → 0 \Delta t\to0 Δt0 时,带跳跃的 ln ⁡ ( S S 0 ) \ln(\dfrac{S}{S_0}) ln(S0S) 的过程在连续时间下的表达式为:
d ln ⁡ ( S ) = μ ′ d t + J d q d\ln(S)=\mu'dt+Jdq dln(S)=μdt+Jdq
其中 d q dq dq 表示跳跃,或者说泊松过程。下图展示了纯泊松过程的二叉树形图,其中1表示跳跃,0表示没有跳跃

当概率为 λ d t \lambda dt λdt 时, d q dq dq 值为1,当概率为 ( 1 − λ d t ) (1-\lambda dt) (1λdt) 时, d q dq dq 值等于0。 d q dq dq 的期望值为 E [ d q ] = λ d t E[dq]=\lambda dt E[dq]=λdt

跳跃的泊松分布

λ \lambda λ 表示每单位时间发生跳跃的概率。但是不再假设只有一次跳跃,而是假设在任意时间段内都可能有多次跳跃。价格跳跃之间是相互独立的,如果在一个短暂时间段 Δ t \Delta t Δt 内不发生跳跃的概率为 ( 1 − λ Δ t ) (1-\lambda\Delta t) (1λΔt),那么在两个时间段内都没有发生跳跃的概率就是 ( 1 − λ Δ t ) 2 (1-\lambda\Delta t)^2 (1λΔt)2。归纳起来,在 N N N 个时间段内都没有发生跳跃的概率就是 ( 1 − λ Δ t ) N (1-\lambda\Delta t)^N (1λΔt)N

P ( n , T ) P(n,T) P(n,T) 表示在 t = 0 t=0 t=0 t = T t=T t=T 之间出现 n n n 次跳跃的概率,其中 d t = T / N dt=T/N dt=T/N;那么在这段时间内没有发生跳跃的概率就是 P ( 0 , T ) P(0,T) P(0,T),并且有:
P ( 0 , T ) = ( 1 − λ d t ) N = ( 1 − λ T N ) N P(0,T)=(1-\lambda dt)^N=(1-\frac{\lambda T}{N})^N P(0,T)=(1λdt)N=(1NλT)N
如果 T T T 保持不变,在极限条件 N → ∞ N\to\infty N 时,就有 d t → 0 dt\to0 dt0,并且根据指数函数的定义,就有:
lim ⁡ N → ∞ P ( 0 , T ) = e − λ T \lim_{N\to\infty}P(0,T)=e^{-\lambda T} NlimP(0,T)=eλT
更普遍的表达式是:
P ( n , T ) = N ! n ! ( N − n ) ! ( λ d t ) n ( 1 − λ d t ) N − n P(n,T)=\frac{N!}{n!(N-n)!}(\lambda dt)^n(1-\lambda dt)^{N-n} P(n,T)=n!(Nn)!N!(λdt)n(1λdt)Nn
可以证明:
lim ⁡ N → ∞ P ( n , T ) = ( λ T ) n n ! e − λ T \lim_{N\to\infty}P(n,T)=\frac{(\lambda T)^n}{n!}e^{-\lambda T} NlimP(n,T)=n!(λT)neλT
注意:
∑ n = 0 ∞ P ( n , T ) = 1 \sum_{n=0}^\infty P(n,T)=1 n=0P(n,T)=1
跳跃的数量可能是0或者无穷大,且这些概率合计等于1

容易证明,在 t = 0 t=0 t=0 t = T t=T t=T 之间,跳跃数量的平均值等于 λ T \lambda T λT,其中 λ \lambda λ 仍然表示单位时间出现一次跳跃的概率。也可以证明,在 t = 0 t=0 t=0 t = T t=T t=T 之间,跳跃数量的方差也等于 λ T \lambda T λT

纯跳跃风险中性期权定价

在一个纯跳跃模型中,如果我们愿意假设风险中性条件成立,那么对一个标准欧式期权进行估值就很变得容易。未来可以出现0次或者无数次跳跃,所有这些可能出现的情境所对应的期权损益,按照每种情景出现的概率进行加权求和再按照无风险利率进行折现,就得到了期权当前的价值。比如说,行权价为 K K K,到期期限为 T T T 的欧式看涨期权的价值就等于:
C = e − γ T ∑ n = 0 ∞ ( λ T ) n n ! e − λ T × max ⁡ [ S 0 e μ ′ T + n J − K , 0 ] C=e^{-\gamma T}\sum_{n=0}^\infty\frac{(\lambda T)^n}{n!}e^{-\lambda T}\times\max[S_0e^{\mu'T+nJ}-K,0] C=eγTn=0n!(λT)neλT×max[S0eμT+nJK,0]
其中,根据风险中性要求, μ ′ = r − λ ( e J − 1 ) \mu'=r-\lambda(e^J-1) μ=rλ(eJ1)

之前提到,如果存在跳跃,那么风险中性定价原理可能不成立,即使我们接受风险中性假设条件,当前的模型也是非常简化的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值