第24章 全跳跃-扩散模型

文章介绍了在考虑股票价格既有扩散又有跳跃情况下的期权定价模型,即默顿跳跃-扩散模型。通过分析,揭示了跳跃如何影响期权价格,特别是在短期期权中形成微笑曲线的原因。模型中,跳跃概率和幅度影响了期权的隐含波动率,导致长期微笑曲线平坦,而短期微笑曲线陡峭。此外,简化模型展示了大幅小概率跳跃如何影响BSM隐含波动率,尤其是在接近平值期权时,隐含波动率与行权价成正比关系。
摘要由CSDN通过智能技术生成

这学期会时不时更新一下伊曼纽尔·德曼(Emanuel Derman) 教授与迈克尔B.米勒(Michael B. Miller)的《The Volatility Smile》这本书,本意是协助导师课程需要,发在这里有意的朋友们可以学习一下,思路不一定够清晰且由于分工原因我是从书本第13章写起,还请大家见谅。

第24章 全跳跃-扩散模型

跳跃加扩散

本节中假设标的股票价格会同时出现跳跃及扩散,并在此基础上对期权进行估值。将买入看涨期权同时卖出股票,以构建一个无风险组合,这跟之前在推导布莱克-斯科尔斯-默顿 (BSM) 公式时用到的方法是相似的。如果标的股票值会出现有限次数的价格跳跃,并且每次跳跃的幅度都是已知的,那么就可以通过股票及其他几个期权来实现瞬时完全对冲。如果可能出现的跳跃次数是无限的,就无法做到完全对冲;能做的只是尽量减小对冲组合损益的方差

默顿跳跃-扩散模型及其偏差分/微分方程

默顿将泊松分布与几何布朗扩散结合在一起,在BSM模型的股票价格变化基础上加人了一项 J d q Jdq Jdq 来描述跳跃,如下所示:
d S S = μ d t + σ d Z + J d q \frac{dS}{S}=\mu dt+\sigma dZ+Jdq SdS=μdt+σdZ+Jdq
其中:
E [ d q ] = λ d t v a r [ d q ] = λ d t E[dq]=\lambda dt\\ var[dq]=\lambda dt E[dq]=λdtvar[dq]=λdt
先假设跳跃幅度 J J J 是固定的,然后再推演到更普遍的情况,假设跳跃服从正态分布

可以按照下面的方法来推导跳跃-扩散过程中期权价格的偏微分方程式。令 C ( S , t ) C(S,t) C(S,t) 表示看涨期权在 t t t 时刻的价值。首先,我们建立一个普通的对冲组合,买人这个期权,同时卖出 n n n 份标的股票,如下:
π = C − n S \pi=C-nS π=CnS
现在:
d C = ( ∂ C ∂ t + 1 2 ∂ 2 C ∂ S 2 σ 2 S 2 ) d t + ∂ C ∂ S ( μ S d t + σ S d Z ) + [ C ( S + J S , t ) − C ( S , t ) ] d q dC=(\frac{\partial C}{\partial t}+\frac{1}{2}\frac{\partial^2C}{\partial S^2}\sigma^2S^2)dt+\frac{\partial C}{\partial S}(\mu Sdt+\sigma SdZ)+[C(S+JS,t)-C(S,t)]dq dC=(tC+21S22Cσ2S2)dt+SC(μSdt+σSdZ)+[C(S+JS,t)C(S,t)]dq
并且有:
n d S = n S ( μ d t + σ d Z + J d q ) = n ( μ S d t + σ S d Z ) + ( n J S ) d q ndS=nS(\mu dt+\sigma dZ+Jdq)=n(\mu Sdt+\sigma SdZ)+(nJS)dq ndS=nS(μdt+σdZ+Jdq)=n(μSdt+σSdZ)+(nJS)dq
因此:
d π = d C − n d S = ( ∂ C ∂ t + 1 2 ∂ 2 C ∂ S 2 σ 2 S 2 ) d t + ( ∂ C ∂ S − n ) ( μ S d t + σ S d Z ) + [ C ( S + J S , t ) − C ( S , t ) − n J S ] d q d\pi=dC-ndS\\=(\frac{\partial C}{\partial t}+\frac{1}{2}\frac{\partial^2C}{\partial S^2}\sigma^2S^2)dt+(\frac{\partial C}{\partial S}-n)(\mu Sdt+\sigma SdZ)+[C(S+JS,t)-C(S,t)-nJS]dq dπ=dCndS=(tC+21S22Cσ2S2)dt+(SCn)(μSdt+σSdZ)+[C(S+JS,t)C(S,t)nJS]dq
不管 n n n 的值是多少,我们都无法对冲所有的风险,因此,我们令 n = ∂ C / ∂ S n=\partial C/\partial S n=C/S,这样恰好可以消除掉由扩散过程导致的股票价格变动。于是,对冲组合价值的变动就变成了:
d π = ( ∂ C ∂ t + 1 2 ∂ 2 C ∂ S 2 σ 2 S 2 ) d t + [ C ( S + J S , t ) − C ( S , t ) − ∂ C ∂ S J S ] d q d\pi=(\frac{\partial C}{\partial t}+\frac{1}{2}\frac{\partial^2C}{\partial S^2}\sigma^2S^2)dt+[C(S+JS,t)-C(S,t)-\frac{\partial C}{\partial S}JS]dq dπ=(tC+21S22Cσ2S2)dt+[C(S+JS,t)C(S,t)SCJS]dq
这是个部分对冲组合,其价值取决于 d q dq dq 值,因此仍然是一个风险组合

有没有什么办法可以消除剩余的跳跃风险?跳跃-扩散模型的观点认为,跳跃是由公司个体决定的,跟市场没有相关性。这样跳跃风险就是可分散的。将所有跳跃幅度平均起来,就可以得到:
E [ d π ] = r π d t ( ∂ C ∂ t + 1 2 ∂ 2 C ∂ S 2 σ 2 S 2 ) d t + E [ C ( S + J S , t ) − C ( S , t ) − ∂ C ∂ S J S ] E [ d q ] = r ( C − S ∂ C ∂ S ) d t E[d\pi]=r\pi dt(\frac{\partial C}{\partial t}+\frac{1}{2}\frac{\partial^2C}{\partial S^2}\sigma^2S^2)dt+E[C(S+JS,t)-C(S,t)-\frac{\partial C}{\partial S}JS]E[dq]\\=r(C-S\frac{\partial C}{\partial S})dt E[dπ]=rπdt(tC+21S22Cσ2S2)dt+E[C(S+JS,t)C(S,t)SCJS]E[dq]=r(CSSC)dt
这个观点并没有太强说服力。很多股票的价格同时出现向下跳跃,就会导致整个市场的下跌,而这在实践中是没有办法分散的。但是,我们还是会沿着上式的思路继续,只是要记住,跳跃风险有可能是无法分散的,并且,不能期待一个对跳跃敏感的组合可以提供无风险的回报

根据泊松过程的均值,可以得到:
( ∂ C ∂ t + 1 2 ∂ 2 C ∂ S 2 σ 2 S 2 ) d t + E [ C ( S + J S , t ) − C ( S , t ) − ∂ C ∂ S J S ] λ d t = r ( C − S ∂ C ∂ S ) d t ∂ C ∂ t + 1 2 ∂ 2 C ∂ S 2 σ 2 S 2 + r ( S ∂ C ∂ S − C ) + E [ C ( S + J S , t ) − C ( S , t ) − ∂ C ∂ S J S ] λ = 0 (\frac{\partial C}{\partial t}+\frac{1}{2}\frac{\partial^2C}{\partial S^2}\sigma^2S^2)dt+E[C(S+JS,t)-C(S,t)-\frac{\partial C}{\partial S}JS]\lambda dt\\=r(C-S\frac{\partial C}{\partial S})dt\\ \frac{\partial C}{\partial t}+\frac{1}{2}\frac{\partial^2C}{\partial S^2}\sigma^2S^2+r(S\frac{\partial C}{\partial S}-C)+E[C(S+JS,t)-C(S,t)-\frac{\partial C}{\partial S}JS]\lambda=0 (tC+21S22Cσ2S2)dt+E[C(S+JS,t)C(S,t)SCJS]λdt=r(CSSC)dttC+21S22Cσ2S2+r(SSCC)+E[C(S+JS,t)C(S,t)SCJS]λ=0
这是一个标准看涨期权的混合差分/偏微分方程式,其到日期损益为 C T = max ⁡ [ S T − K , 0 ] C_T=\max[S_T-K,0] CT=max[STK,0]。对于标准看跌期权来说,也有一个与此类似的方程式。当 λ = 0 \lambda=0 λ=0 时,这就成了一个 BSM 方程式

跳跃-扩散三叉树模型及其调整

在上一章中曾提到,在股票价格 S S S 变动的游走变量上增加一个伊藤 σ 2 / 2 \sigma^2/2 σ2/2 项,就可以用二叉树模型来描述扩散过程,如上图所示,其中 σ \sigma σ 表示股票对数回报的波动率。要实现这点,对数正态分布扩散过程中的纯风险中性游走变量就需要满足 μ = r − σ 2 / 2 \mu=r-\sigma^2/2 μ=rσ2/2,其中 r r r 表示无风险利率

可以将跳跃加到这个模型中去,也就是在树形图中再加上一个分支,将二叉树形图变成三叉树形图,如下图所示

Δ t \Delta t Δt 时间段后的预期对数回报就是:
E [ ln ⁡ ( S S 0 ) ] = 1 2 ( 1 − λ Δ t ) ( μ Δ t + σ Δ t ) + 1 2 ( 1 − λ Δ t ) ( μ Δ t − σ Δ t ) + λ Δ t ( μ Δ t + J ) = ( μ + J λ ) Δ t E[\ln(\frac{S}{S_0})]=\frac{1}{2}(1-\lambda\Delta t)(\mu\Delta t+\sigma\sqrt{\Delta t})+\frac{1}{2}(1-\lambda\Delta t)(\mu\Delta t-\sigma\sqrt{\Delta t})\\+\lambda\Delta t(\mu\Delta t+J)=(\mu+J\lambda)\Delta t E[ln(S0S)]=21(1λΔt)(μΔt+σΔt )+21(1λΔt)(μΔtσΔt )+λΔt(μΔt+J)=(μ+Jλ)Δt
因此,在跳跃-扩散过程中,有效游走变量就变成了
μ J D = μ + J λ \mu_{JD}=\mu+J\lambda μJD=μ+Jλ
该过程的方差就是:
v a r [ ln ⁡ ( S S 0 ) ] = 1 2 ( 1 − λ Δ t ) ( σ Δ t − J λ Δ t ) 2 + 1 2 ( 1 − λ Δ t ) ( σ Δ t + J λ Δ t ) 2 + λ Δ t [ J ( 1 − λ Δ t ) ] 2 = ( 1 − λ Δ t ) ( σ 2 + J 2 λ ) Δ t var[\ln(\frac{S}{S_0})]=\frac{1}{2}(1-\lambda\Delta t)(\sigma\sqrt{\Delta t}-J\lambda\Delta t)^2+\frac{1}{2}(1-\lambda\Delta t)(\sigma\sqrt{\Delta t}+J\lambda\Delta t)^2\\+\lambda\Delta t[J(1-\lambda\Delta t)]^2=(1-\lambda\Delta t)(\sigma^2+J^2\lambda)\Delta t var[ln(S0S)]=21(1λΔt)(σΔt JλΔt)2+21(1λΔt)(σΔt +JλΔt)2+λΔt[J(1λΔt)]2=(1λΔt)(σ2+J2λ)Δt
Δ t \Delta t Δt 趋近于0时,跳跃-扩散过程的方差就变成了:
σ J D 2 = σ 2 + J 2 λ \sigma_{JD}^2=\sigma^2+J^2\lambda σJD2=σ2+J2λ

经修正的过程

我们应该如何调整扩散和跳跃的参数,使股价按照预期的无风险利率增长呢,也就是说,使 E [ d S ] = S r d t E[dS]=Srdt E[dS]=Srdt

首先,根据之前图中描述的跳跃-扩散过程来计算股价增长率,可以得到:
E [ S S 0 ] = 1 2 ( 1 − λ Δ t ) e μ Δ t + σ Δ t + 1 2 ( 1 − λ Δ t ) e μ Δ t − σ Δ t + λ Δ t e μ Δ t + J = e μ Δ t [ 1 − λ Δ t 2 ( e σ Δ t + e − σ Δ t ) + λ Δ t e J ] E[\frac{S}{S_0}]=\frac{1}{2}(1-\lambda\Delta t)e^{\mu\Delta t+\sigma\sqrt{\Delta t}}+\frac{1}{2}(1-\lambda\Delta t)e^{\mu\Delta t-\sigma\sqrt{\Delta t}}+\lambda\Delta te^{\mu\Delta t+J}\\=e^{\mu\Delta t}[\frac{1-\lambda\Delta t}{2}(e^{\sigma\sqrt{\Delta t}}+e^{-\sigma\sqrt{\Delta t}})+\lambda\Delta te^J] E[S0S]=21(1λΔt)eμΔt+σΔt +21(1λΔt)eμΔtσΔt +λΔteμΔt+J=eμΔt[21λΔt(eσΔt +eσΔt )+λΔteJ]
合并泰勒展开式中所有与 Δ t \Delta t Δt 相关的各阶,可以得到:
E [ S S 0 ] = e ( μ + σ 2 2 + λ ( e J − 1 ) ) Δ t + 高阶项 E[\frac{S}{S_0}]=e^{(\mu+\frac{\sigma^2}{2}+\lambda(e^J-1))\Delta t}+高阶项 E[S0S]=e(μ+2σ2+λ(eJ1))Δt+高阶项
如果要使股价期望值按照无风险利率增长,就必须满足:
r = μ + σ 2 2 + λ ( e J − 1 ) r=\mu+\frac{\sigma^2}{2}+\lambda(e^J-1) r=μ+2σ2+λ(eJ1)
扩散过程的游走变量需要满足:
μ J D = r − σ 2 2 − λ ( e J − 1 ) \mu_{JD}=r-\frac{\sigma^2}{2}-\lambda(e^J-1) μJD=r2σ2λ(eJ1)
上式中, σ 2 / 2 \sigma^2/2 σ2/2 可以看作对扩散过程的波动率所产生的额外回报的修正,而 λ ( e J − 1 ) \lambda(e^J-1) λ(eJ1) 可以看作对跳跃过程产生的额外回报的修正。换句话说,我们需要修正扩散过程的游走变量,使其能够反映扩散波动率和跳跃的共同影响

用跳跃-扩散模型对看涨期权进行估值

首先,假设只有一次跳跃,幅度为 J J J

在风险中性估值假设条件下,看涨期权的价值就等于其未来预期价值按照无风险利率折现之后的现值。数学表达式为:
C J D = e − r τ E [ max ⁡ ( S T − K , 0 ) ] C_{JD}=e^{-r\tau}E[\max(S_T-K,0)] CJD=erτE[max(STK,0)]
其中 r r r 表示无风险利率, K K K 表示行权价格, τ \tau τ 表示距离到期日期限, S T S_T ST 表示到期日股票价格,并且有:
S T = S μ J D τ + J q + σ τ Z S_T=S^{\mu_{JD}\tau+Jq+\sigma\sqrt\tau Z} ST=SμJDτ+Jq+στ Z
其中在风险中性条件下, μ J D \mu_{JD} μJD 的值可以用:
μ J D = r − σ 2 2 − λ ( e J − 1 ) \mu_{JD}=r-\frac{\sigma^2}{2}-\lambda(e^J-1) μJD=r2σ2λ(eJ1)
计算。记住,此时我们假设所有跳跃的幅度都是 J J J,它反映的时跳跃幅度的百分比

在初始日与到期日之间,跳跃是随机出现的,但是在计算股票价格在到期日分布的时候,重要的是到期日之前跳跃出现的次数,而不是跳跃出现的时点。下图展示是跳跃-扩散过程的蒙特卡罗模拟结果。可以发现,股票价格在到期日的分布与扩散过程的序列相对应,并且随着跳跃次数的增加和概率的减少而整体移动

根据上图,可以按照跳跃的次数以及所有可能的扩散路径对 S T S_T ST 值进行分组,进而就可以知道所有可能的 S T S_T ST 值,于是:
C J D = e − r τ ∑ n = 0 ∞ ( λ τ ) n n ! e − λ τ E [ max ⁡ ( S T n − K , 0 ) ] C_{JD}=e^{-r\tau}\sum_{n=0}^\infty \frac{(\lambda\tau)^n}{n!}e^{-\lambda\tau}E[\max(S^n_T-K,0)] CJD=erτn=0n!(λτ)neλτE[max(STnK,0)]
其中 S T n S_T^n STn 表示经历 n n n 次跳跃及其后的扩散过程之后,股票价格在到期日的对数正态分布

在求和项中,跳跃的作用就是使这个扩散的对数正态分布发生整体移动。在风险中性条件下,初始价格为 S S S 的股票在发生 n n n 次跳跃之后的回报如下:
μ n = r − σ 2 2 − λ ( e J − 1 ) + n J τ \mu_n=r-\frac{\sigma^2}{2}-\lambda(e^J-1)+\frac{nJ}{\tau} μn=r2σ2λ(eJ1)+τnJ
最后一项游走变量反映的就是 n n n 次跳跃的影响。分母为 τ \tau τ,这是因为由 n n n 次跳跃导致的分布整体移动与跳跃发生的时点无关,但是游走变量从定义上讲就是每单位时间的移动

S T S_T ST 成对数正态分布,均值由n次跳跃决定,我们可以用BSM模型价格来表示上式中的期望值:
E [ max ⁡ ( S T n − K , 0 ) ] = e r n τ C B S M ( S , K , τ , σ , r n ) E[\max(S^n_T-K,0)]=e^{r_n\tau}C_{BSM}(S,K,\tau,\sigma,r_n) E[max(STnK,0)]=ernτCBSM(S,K,τ,σ,rn)
其中 C B S M ( S , K , τ , σ , r n ) C_{BSM}(S,K,\tau,\sigma,r_n) CBSM(S,K,τ,σ,rn) 表示标准BSM公式下的看涨期权价格,其中行权价格是 K K K,波动率为 σ \sigma σ,折现率是 r n r_n rn,且 r n r_n rn 满足:
r n ≡ μ n + σ 2 2 = r − λ ( e J − 1 ) + n J τ r_n\equiv\mu_n+\frac{\sigma^2}{2}=r-\lambda(e^J-1)+\frac{nJ}{\tau} rnμn+2σ2=rλ(eJ1)+τnJ
结合之前的式子,可以得到:
C J D = e − r τ ∑ n = 0 ∞ ( λ τ ) n n ! e − λ τ e r n τ C B S M ( S , K , τ , σ , r n ) = e − r τ ∑ n = 0 ∞ ( λ τ ) n n ! e − λ τ e ( r − λ ( e J − 1 ) + n J τ ) τ C B S M ( S , K , τ , σ , r n ) = e − λ e J τ ∑ n = 0 ∞ ( λ τ e J ) n n ! C B S M ( S , K , τ , σ , r − λ ( e J − 1 ) + n J τ ) C_{JD}=e^{-r\tau}\sum_{n=0}^\infty \frac{(\lambda\tau)^n}{n!}e^{-\lambda\tau}e^{r_n\tau}C_{BSM}(S,K,\tau,\sigma,r_n)\\=e^{-r\tau}\sum_{n=0}^\infty \frac{(\lambda\tau)^n}{n!}e^{-\lambda\tau}e^{(r-\lambda(e^J-1)+\frac{nJ}{\tau})\tau}C_{BSM}(S,K,\tau,\sigma,r_n)\\=e^{-\lambda e^J\tau}\sum_{n=0}^\infty \frac{(\lambda\tau e^J)^n}{n!}C_{BSM}(S,K,\tau,\sigma,r-\lambda(e^J-1)+\frac{nJ}{\tau}) CJD=erτn=0n!(λτ)neλτernτCBSM(S,K,τ,σ,rn)=erτn=0n!(λτ)neλτe(rλ(eJ1)+τnJ)τCBSM(S,K,τ,σ,rn)=eλeJτn=0n!(λτeJ)nCBSM(S,K,τ,σ,rλ(eJ1)+τnJ)
λ ˉ = λ e J \bar\lambda=\lambda e^J λˉ=λeJ,可以得到:
C J D = e − λ ˉ τ ∑ n = 0 ∞ ( λ ˉ τ ) n n ! C B S M ( S , K , τ , σ , r − λ ( e J − 1 ) + n J τ ) C_{JD}=e^{-\bar\lambda\tau}\sum_{n=0}^\infty \frac{(\bar\lambda\tau)^n}{n!}C_{BSM}(S,K,\tau,\sigma,r-\lambda(e^J-1)+\frac{nJ}{\tau}) CJD=eλˉτn=0n!(λˉτ)nCBSM(S,K,τ,σ,rλ(eJ1)+τnJ)

混合公式

跳跃-扩散价格等于 BSM 期权价格的加权平均数,而权重则来自于概率为 λ ˉ \bar\lambda λˉ 泊松分布。因此,我们将 λ ˉ \bar\lambda λˉ 称为有效跳跃概率。上式是一个混合公式。在跳跃-扩散过程中,我们需要假设跳跃风险是可以分散。这样才能引用风险中性定理,但实际上,这条假设是否成立值得怀疑

这一逻辑对标准欧式看跌期权和看涨期权同样适用。在对看跌期权定价的时候,只需要将上式右侧中的 C B S M C_{BSM} CBSM 替换成 P B S M P_{BSM} PBSM 即可,也就是BSM公式中的看跌期权价格,各项参数均保持不变

到目前为止,我们都是假设跳跃的幅度 J J J 是固定的。我们也可以像默顿一样,归纳出更具有普遍意义的结论,假设跳跃的回报服从正态分布,均值是 μ J \mu_J μJ,标准差是 σ J \sigma_J σJ,于是就有:
J ∼ N ( μ J , σ J 2 ) E [ e J ] = e μ J + 1 2 σ J 2 J\sim N(\mu_J,\sigma_J^2)\\ E[e^J]=e^{\mu_J+\frac{1}{2}\sigma_J^2} JN(μJ,σJ2)E[eJ]=eμJ+21σJ2
因此,具有普遍意义的表达式就是:
C J D = e − λ ˉ τ ∑ n = 0 ∞ ( λ ˉ τ ) n n ! C B S M ( S , K , τ , σ 2 + n σ J 2 τ , r − λ ( e μ J + 1 2 σ J 2 − 1 ) + n ( μ J + 1 2 σ J 2 ) τ ) C_{JD}=e^{-\bar\lambda\tau}\sum_{n=0}^\infty \frac{(\bar\lambda\tau)^n}{n!}C_{BSM}(S,K,\tau,\sqrt{\sigma^2+\frac{n\sigma_J^2}{\tau}},r-\lambda(e^{\mu_J+\frac{1}{2}\sigma_J^2}-1)+\frac{n(\mu_J+\frac{1}{2}\sigma_J^2)}{\tau}) CJD=eλˉτn=0n!(λˉτ)nCBSM(S,K,τ,σ2+τnσJ2 ,rλ(eμJ+21σJ21)+τn(μJ+21σJ2))
其中:
λ ˉ = λ e μ J + 1 2 σ J 2 \bar\lambda=\lambda e^{\mu_J+\frac{1}{2}\sigma_J^2} λˉ=λeμJ+21σJ2
对于特殊情况,当 μ J = − 0.5 σ J 2 \mu_J=-0.5\sigma_J^2 μJ=0.5σJ2 时,于是 E [ e J ] = 1 E[e^J]=1 E[eJ]=1,跳跃不会增加这个过程的游走变量,从直观上可以得到一个简化的表达式,如下:
C J D = e − λ τ ∑ n = 0 ∞ ( λ τ ) n n ! C B S M ( S , K , τ , σ 2 + n σ J 2 τ , r ) C_{JD}=e^{-\lambda\tau}\sum_{n=0}^\infty \frac{(\lambda\tau)^n}{n!}C_{BSM}(S,K,\tau,\sqrt{\sigma^2+\frac{n\sigma_J^2}{\tau}},r) CJD=eλτn=0n!(λτ)nCBSM(S,K,τ,σ2+τnσJ2 ,r)
其中,我们将无限数量的 BSM (期权) 价格加在一起,每个价格对应的无风险利率都是相等的,只是波动率会根据跳跃次数的不同而不同

跳跃-扩散微笑曲线的定性分析

跳跃-扩散模型可以产生非常陡峭的短期微笑曲线,跟在股票指数期权市场上观察到的现象很相似。与此不同的是,除非波动率的波动率非常大,否则经扩展的BSM随机波动率模型很难产生非常陡峭的短期微笑曲线

在跳跃-扩散模型中,长期微笑曲线会变得平坦。如果到期日非常长,单次跳跃对于到期日股票价格分布的影响远远小于扩散过程,扩散过程的方差随时间线性递增。记住,在均值回归的随机波动率模型中,长期微笑曲线也会变得平坦

在扩散过程的基础上加人一个服从泊松分布的跳跃过程得到的结果就是一系列BSM扩散分布,这些分布的均值各不相同,而且概率逐渐下降。因此,固定幅度的跳跃会产生多峰密度,如上图所示。如果每次跳跃的幅度也是随机的,那么股票的整体分布也会更平滑

在其他条件相同的情况下,跳跃的频率越高,(股票价格)偏离纯扩散分布的程度也就越大,因此微笑曲线也就更陡峭。此外,高频、小幅跳跃会产生更平滑的回报(分布)

简化跳跃-扩散模型:单次大幅小概率跳跃

一个跳跃的简单混合模型可以反映股票指数期权微笑曲线的核心特征。从上图过程开始,其中 J J J 表示大幅瞬时向上跳跃(正跳跃),概率很小为 p p p M M M 表示小幅向下跳跃,但是概率很大为 ( 1 − p ) (1-p) (1p)。我们将会发现, J J J M M M 服从风险中性定理,如果 J J J 很大 M M M 就很小,以至于我们认为它不再构成一个跳跃。不管是向上跳跃 J J J 或者是向下跳跃 M M M,在跳跃之后,我们假设股票都会服从一个波动率为 σ \sigma σ 的纯扩散过程,此过程中不再有跳跃。为了简化分析,假设无风险利率为0

在这个简单的模型中,假设只会出现一次跳跃

假设当前股票的价格为 S S S,风险中性条件下且 r = 0 r=0 r=0,于是就有:
S = p ( S + J ) + ( 1 − p ) ( S − M ) S=p(S+J)+(1-p)(S-M) S=p(S+J)+(1p)(SM)
据此可以得到:
M = p 1 − p J M=\frac{p}{1-p}J M=1ppJ
如果 p p p 值很小,可知:
M ≈ p J M\approx pJ MpJ
这远小于 J J J

如果用 C B S M ( S , σ ) C_{BSM}(S,\sigma) CBSM(S,σ) 表示行权价为 K K K,距到期日期限为 τ \tau τ,隐含波动率为 σ \sigma σ,且标的股票价格为 S S S 的期权价格,那么混合公式就可以表示为:
C J D = p × C B S M ( S + J , σ ) + ( 1 − p ) C B S M ( S − M , σ ) ≈ p × C B S M ( S + J , σ ) + ( 1 − p ) C B S M ( S − p J , σ ) C_{JD}=p\times C_{BSM}(S+J,\sigma)+(1-p)C_{BSM}(S-M,\sigma)\\\approx p\times C_{BSM}(S+J,\sigma)+(1-p)C_{BSM}(S-pJ,\sigma) CJD=p×CBSM(S+J,σ)+(1p)CBSM(SM,σ)p×CBSM(S+J,σ)+(1p)CBSM(SpJ,σ)
为了能够得到更有效的近似表达式,我们假设在当前的情景下,3 个无因次变量 p , σ τ , J / S p,\sigma\sqrt\tau,J/S p,στ ,J/S 满足:
p ≪ σ τ ≪ J S p\ll\sigma\sqrt\tau\ll\frac{J}{S} pστ SJ
在我们假设的情景中,出现大幅跳跃 J J J 的可能性 p p p 很小,根据这些假设条件,我们在近似表达式中可以只保留领头阶 p p p

再来看该式:
C J D ≈ p × C B S M ( S + J , σ ) + ( 1 − p ) C B S M ( S − p J , σ ) C_{JD}\approx p\times C_{BSM}(S+J,\sigma)+(1-p)C_{BSM}(S-pJ,\sigma) CJDp×CBSM(S+J,σ)+(1p)CBSM(SpJ,σ)
我们还将假设期权在初始时接近于平值状态,也就是说 K ≈ S K\approx S KS。由于 J / S ≫ σ τ J/S\gg\sigma\sqrt\tau J/Sστ ,正跳跃 J J J 会使看涨期权进入深度实值状态,于是混合公式中的第一个看涨期权 C ( S + J , σ ) C(S+J,\sigma) C(S+J,σ),从效果上来看就是一个远期合约,其价值等于:
C ( S + J , σ ) ≈ S + J − K e − r τ ≈ S + J − K C(S+J,\sigma)\approx S+J-Ke^{-r\tau}\approx S+J-K C(S+J,σ)S+JKerτS+JK
其中最后一项用到了假设条件 r = 0 r=0 r=0。假设这个看涨期权实质上相当于个远期合约,因为我们假设了跳跃 J J J 是正,这非常重要,因此,我们在这里推导出来的跳跃-扩散看涨期权定价公式和微笑曲线,并不适用于负跳跃的情况

将上式代入可得:
C J D = p × ( S + J − K ) + ( 1 − p ) C B S M ( S − p J , σ ) C_{JD}=p\times(S+J-K)+(1-p)C_{BSM}(S-pJ,\sigma) CJD=p×(S+JK)+(1p)CBSM(SpJ,σ)
由于 p J pJ pJ 值很小,混合公式中第二项 C B S M ( S − p J , σ ) C_{BSM}(S-pJ,\sigma) CBSM(SpJ,σ) 就表示一个接近于平值状态的期权。对于看涨期权来说,接近平值状态就意味着 C B S M ( S , σ ) ∼ S σ τ C_{BSM}(S,\sigma)\sim S\sigma\sqrt\tau CBSM(S,σ)Sστ ,于是在上式中, p C B S M ( S − p J , σ ) pC_{BSM}(S-pJ,\sigma) pCBSM(SpJ,σ) 的阶就是 p S σ τ pS\sigma\sqrt\tau pSστ ,这远远小于第一项的阶 p S pS pS。忽略之后,可得:
C J D ≈ p × ( S + J − K ) + C B S M ( S − p J , σ ) ≈ p × ( S − K + J ) + C B S M ( S , σ ) − p J ∂ C B S M ∂ S ≈ C B S M ( S , σ ) + p × [ S − K + J ( 1 − ∂ C B S M ∂ S ) ] ≈ C B S M ( S , σ ) + p × [ S − K + J ( 1 − N ( d 1 ) ) ] C_{JD}\approx p\times(S+J-K)+C_{BSM}(S-pJ,\sigma)\\\approx p\times(S-K+J)+C_{BSM}(S,\sigma)-pJ\frac{\partial C_{BSM}}{\partial S}\\\approx C_{BSM}(S,\sigma)+p\times[S-K+J(1-\frac{\partial C_{BSM}}{\partial S})]\\\approx C_{BSM}(S,\sigma)+p\times[S-K+J(1-N(d_1))] CJDp×(S+JK)+CBSM(SpJ,σ)p×(SK+J)+CBSM(S,σ)pJSCBSMCBSM(S,σ)+p×[SK+J(1SCBSM)]CBSM(S,σ)+p×[SK+J(1N(d1))]
在接近平值状态时:
N ( d 1 ) ≈ 1 2 + 1 2 π 1 σ τ ln ⁡ ( S K ) N(d_1)\approx\frac{1}{2}+\frac{1}{\sqrt{2\pi}}\frac{1}{\sigma\sqrt\tau}\ln(\frac{S}{K}) N(d1)21+2π 1στ 1ln(KS)
因此:
C J D ≈ C B S M ( S , σ ) + p × [ ( S − K ) + J ( 1 2 − 1 2 π 1 σ τ ln ⁡ ( S K ) ) ] C_{JD}\approx C_{BSM}(S,\sigma)+p\times[(S-K)+J(\frac{1}{2}-\frac{1}{\sqrt{2\pi}}\frac{1}{\sigma\sqrt\tau}\ln(\frac{S}{K}))] CJDCBSM(S,σ)+p×[(SK)+J(212π 1στ 1ln(KS))]
由于目前处于接近平值状态,上式中的 ( S − K ) (S-K) (SK) 项相比 J J J 很小,可以忽略不计;单独看 ln ⁡ ( S / K ) \ln(S/K) ln(S/K) 的值也很小,但是它乘以了 J / σ τ J/\sigma\sqrt\tau J/στ ,这个值在我们的假设情景中就很大,因此我们需要保留这项。形式上,如果 σ τ \sigma\sqrt\tau στ 很小,但是 J J J K K K 的数量级相近,那么就存在:
J σ τ ln ⁡ ( S K ) = J σ τ ln ⁡ ( 1 + S − K K ) ≈ J K [ S − K σ τ ] ≈ O ( S − K σ τ ) ≫ S − K \frac{J}{\sigma\sqrt\tau}\ln(\frac{S}{K})=\frac{J}{\sigma\sqrt\tau}\ln(1+\frac{S-K}{K})\approx\frac{J}{K}[\frac{S-K}{\sigma\sqrt\tau}]\approx O(\frac{S-K}{\sigma\sqrt\tau})\gg S-K στ Jln(KS)=στ Jln(1+KSK)KJ[στ SK]O(στ SK)SK
因此:
C J D ≈ C B S M ( S , σ ) + p J ( 1 2 − 1 2 π 1 σ τ ln ⁡ ( S K ) ) C_{JD}\approx C_{BSM}(S,\sigma)+pJ(\frac{1}{2}-\frac{1}{\sqrt{2\pi}}\frac{1}{\sigma\sqrt\tau}\ln(\frac{S}{K})) CJDCBSM(S,σ)+pJ(212π 1στ 1ln(KS))
这就是接近平值状态看涨期权的跳跃-扩散近似定价公式,其中假设只有一次正跳跃,且存在 p ≪ σ τ ≪ J / S p\ll\sigma\sqrt\tau\ll J/S pστ J/S

如果要用BSM模型来解释跳跃-扩散价格,那就需要按照 BSM 隐含波动率 Σ \Sigma Σ 来进行报价,其中 C B S M ( S , Σ ) = C J D C_{BSM}(S,\Sigma)=C_{JD} CBSM(S,Σ)=CJD。为了将隐含波动率与实际扩散波动率联系起来,我们可以用到下列近似表达式:
C J D = C B S M ( S , Σ ) = C B S M ( S , σ + Σ − σ ) ≈ C B S M ( S , σ ) + ∂ C B S M ∂ σ ( Σ − σ ) C_{JD}=C_{BSM}(S,\Sigma)=C_{BSM}(S,\sigma+\Sigma-\sigma)\approx C_{BSM}(S,\sigma)+\frac{\partial C_{BSM}}{\partial\sigma}(\Sigma-\sigma) CJD=CBSM(S,Σ)=CBSM(S,σ+Σσ)CBSM(S,σ)+σCBSM(Σσ)
对比上述两式可以发现:
Σ ≈ σ + p J ( 1 2 − 1 2 π 1 σ τ ln ⁡ ( S K ) ) ∂ C B S M ∂ σ \Sigma\approx\sigma+\frac{pJ(\frac{1}{2}-\frac{1}{\sqrt{2\pi}}\frac{1}{\sigma\sqrt\tau}\ln(\frac{S}{K}))}{\frac{\partial C_{BSM}}{\partial\sigma}} Σσ+σCBSMpJ(212π 1στ 1ln(KS))
对于接近平值状态的期权:
∂ C B S M ∂ σ = S τ N ′ ( d 1 ) ≈ S τ 2 π \frac{\partial C_{BSM}}{\partial\sigma}=S\sqrt\tau N'(d_1)\approx\frac{S\sqrt\tau}{\sqrt{2\pi}} σCBSM=Sτ N(d1)2π Sτ
于是:
Σ ≈ σ + p J ( 1 2 − 1 2 π 1 σ τ ln ⁡ ( S K ) ) S τ 2 π ≈ σ + p J 2 π S τ ( 1 2 − 1 2 π 1 σ τ ln ⁡ ( S K ) ) ≈ σ + p J S τ ( π 2 + 1 σ τ ln ⁡ ( K S ) ) \Sigma\approx\sigma+\frac{pJ(\frac{1}{2}-\frac{1}{\sqrt{2\pi}}\frac{1}{\sigma\sqrt\tau}\ln(\frac{S}{K}))}{\frac{S\sqrt\tau}{\sqrt{2\pi}}}\\\approx\sigma+pJ\frac{\sqrt{2\pi}}{S\sqrt\tau}(\frac{1}{2}-\frac{1}{\sqrt{2\pi}}\frac{1}{\sigma\sqrt\tau}\ln(\frac{S}{K}))\\\approx\sigma+\frac{pJ}{S\sqrt\tau}(\sqrt{\frac{\pi}{2}}+\frac{1}{\sigma\sqrt\tau}\ln(\frac{K}{S})) Σσ+2π Sτ pJ(212π 1στ 1ln(KS))σ+pJSτ 2π (212π 1στ 1ln(KS))σ+Sτ pJ(2π +στ 1ln(SK))
当期权接近于平值状态时,在这些近似表达式中,跳跃-扩散微笑曲线与 ln ⁡ ( K / S ) \ln(K/S) ln(K/S) 成线性关系。给定了大幅正跳跃 J J J 的可能性之后,BSM 隐含波动率会随着行权价的上升而上升,这跟我们的预期是一致的

可以进一步检查这一关系,看在到期期限很短或者很长的情况下能得到怎样的结论。在默顿模型中,我们已经证明了,出现 n n n 次跳跃的有效概率为:
p ( n ) = e − λ ˉ τ ( λ ˉ τ ) n n ! p(n)=e^{-\bar\lambda\tau}\frac{(\bar\lambda\tau)^n}{n!} p(n)=eλˉτn!(λˉτ)n
出现一次跳跃的有效概率,也就是上式中的 p p p 值就等于 p = λ ˉ τ e − λ ˉ τ p=\bar\lambda\tau e^{-\bar\lambda\tau} p=λˉτeλˉτ,其中 λ ˉ = λ e ln ⁡ ( 1 + J ) = λ ( 1 + J ) \bar\lambda=\lambda e^{\ln(1+J)}=\lambda(1+J) λˉ=λeln(1+J)=λ(1+J) λ \lambda λ 是每单位时间出现一次跳跃的概率。将这个关于 p p p 的表达式代人之前关于 Σ \Sigma Σ 的式子中,就可以得到:
Σ ≈ σ + λ ˉ τ e − λ ˉ τ J S ( π 2 + 1 σ τ ln ⁡ ( K S ) ) ≈ σ + λ ˉ e − λ ˉ τ J S ( π τ 2 + 1 σ ln ⁡ ( K S ) ) τ → 0 : Σ ( K , S ) ≈ σ + λ ˉ J S 1 σ ln ⁡ ( K S ) \Sigma\approx\sigma+\frac{\bar\lambda\sqrt\tau e^{-\bar\lambda\tau}J}{S}(\sqrt{\frac{\pi}{2}}+\frac{1}{\sigma\sqrt\tau}\ln(\frac{K}{S}))\\\approx\sigma+\frac{\bar\lambda e^{-\bar\lambda\tau}J}{S}(\sqrt{\frac{\pi\tau}{2}}+\frac{1}{\sigma}\ln(\frac{K}{S}))\\ \tau\to0:\Sigma(K,S)\approx\sigma+\frac{\bar\lambda J}{S}\frac{1}{\sigma}\ln(\frac{K}{S}) Σσ+Sλˉτ eλˉτJ(2π +στ 1ln(SK))σ+SλˉeλˉτJ(2πτ +σ1ln(SK))τ0:Σ(K,S)σ+SλˉJσ1ln(SK)
这是条有限微笑曲线,且不会因为期限较短就消失。其斜率与跳跃幅度的百分比及其概率成比例关系,并且与 ln ⁡ ( K / S ) \ln(K/S) ln(K/S) 成线性关系。预期跳跃幅度越大,斜度越大。这一模型可以从定性的角度去解释短期股票指数期权微笑曲线的斜度

如果到期期限较长, τ → ∞ \tau\to\infty τ e − λ ˉ τ e^{-\bar\lambda\tau} eλˉτ 就趋近于0,上式中的 ln ⁡ ( K / S ) \ln(K/S) ln(K/S) 的系数就消失了,长期微笑曲线变得平坦

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值