金融计量模型(七):线性时间序列模型——单变量时间序列

线性时间序列模型——单变量时间序列

平稳性

平稳性是时间序列分析的基础。

严平稳

严平稳:分布是时不变的,即对所有的 t t t,任意正整数 k k k 和任意 k k k 个正整数 ( t 1 , ⋯   , t k ) (t_1,\cdots,t_k) (t1,,tk) ( r t 1 , ⋯   , r t k ) (r_{t_1},\cdots,r_{t_k}) (rt1,,rtk) 的联合分布与 ( r t 1 + t , ⋯   , r t k + t ) (r_{t_1+t},\cdots,r_{t_k+t}) (rt1+t,,rtk+t) 的联合分布是相同的。

弱平稳

弱平稳:前两个矩是时不变的, r t r_t rt 的均值与 r t r_t rt r t − l r_{t-l} rtl 的协方差不随时间改变,其中 l l l 是任意整数。

  1. 对所有的 t t t E ( r t ) = μ E(r_t)=\mu E(rt)=μ μ \mu μ 为一个常数。
  2. 对所有的 t t t V a r ( r t ) = E [ ( r t − μ ) 2 ] = σ 2 Var(r_t)=E[(r_t-\mu)^2]=\sigma^2 Var(rt)=E[(rtμ)2]=σ2
  3. 对所有的 t t t γ k = c o v ( r t , r t − k ) = E [ ( r t − μ ) ( r t − k − μ ) ] \gamma_k=cov(r_t,r_{t-k})=E[(r_t-\mu)(r_{t-k}-\mu)] γk=cov(rt,rtk)=E[(rtμ)(rtkμ)] γ k \gamma_k γk 只依赖于 k k k γ 0 = V a r ( r t ) , γ − l = γ l \gamma_0=Var(r_t),\gamma_{-l}=\gamma_l γ0=Var(rt),γl=γl

实际中,假定我们有 T T T 个数据观测点 { r t ∣ t = 1 , ⋯   , T } \{r_t|t=1,\cdots,T\} {rtt=1,,T},弱平稳性意味着数据的时间图显示 T T T 个值在一个常数水平上下以相同的幅度波动。

自相关函数(ACF)

ρ k = C o v ( r t , r t − k ) V a r ( r t ) = γ k γ 0 ρ 0 = 1 , ρ k = ρ − k , k ≠ 0 , − 1 ≤ ρ k ≤ 1 \rho_k=\frac{Cov(r_t,r_{t-k})}{Var(r_t)}=\frac{\gamma_k}{\gamma_0}\\\rho_0=1,\rho_k=\rho_{-k},k\neq0,-1\leq \rho_k\leq1 ρk=Var(rt)Cov(rt,rtk)=γ0γkρ0=1,ρk=ρk,k=0,1ρk1

考虑一个给定的收益率样本 { r t } t = 1 T \{r_t\}^T_{t=1} {rt}t=1T r ˉ \bar{r} rˉ 是样本均值:
ρ ^ k = ∑ t = k + 1 T ( r t − r ˉ ) ( r t − k − r ˉ ) ∑ t = 1 T ( r t − r ˉ ) 2 , 0 ≤ k < T − 1 \hat\rho_k=\frac{\sum_{t=k+1}^T(r_t-\bar{r})(r_{t-k}-\bar{r})}{\sum^T_{t=1}(r_t-\bar{r})^2},0\leq k< T-1 ρ^k=t=1T(rtrˉ)2t=k+1T(rtrˉ)(rtkrˉ),0k<T1
事实上,线性时间序列模型可以用其ACF来表征。

{ r t } \{r_t\} {rt} 是一个独立同分布序列,满足 E ( r t 2 ) < ∞ E(r_t^2)<\infin E(rt2)<,则对任意固定的正整数 l l l ρ ^ l \hat\rho_l ρ^l 渐进服从均值为0,方差为 1 / T 1/T 1/T 的正态分布。

{ r t } \{r_t\} {rt} 是一个弱平稳序列,满足 r t = μ + ∑ i = 0 q ψ i a t − i , ψ 0 = 1 r_t=\mu+\sum_{i=0}^q\psi_ia_{t-i},\psi_0=1 rt=μ+i=0qψiati,ψ0=1 { a j } \{a_j\} {aj} 是均值为0的独立同分布任意变量的序列,则对 l > q l>q l>q ρ ^ l \hat\rho_l ρ^l 渐近地服从均值为0、方差为 ( 1 + 2 ∑ i = 1 q ρ i 2 ) / T (1+2\sum_{i=1}^q\rho_i^2)/T (1+2i=1qρi2)/T 的正态分布。

检验单个ACF

对一个给定的正整数 ,可进行检验 H H H,检验统计量为:
t   r a t i o = ρ ^ l ( 1 + 2 ∑ i = 1 l − 1 ρ i 2 ) / T t\ ratio=\frac{\hat\rho_l}{\sqrt{(1+2\sum_{i=1}^{l-1}\rho_i^2)/T}} t ratio=(1+2i=1l1ρi2)/T ρ^l
如果 { r t } \{r_t\} {rt} 是一个平稳高斯序列且满足当 j > l j>l j>l ρ l = 0 \rho_l=0 ρl=0,则 t   r a t i o t\ ratio t ratio 渐进服从均值为0、方差为 ( 1 + 2 ∑ i = 1 l − 1 ρ i 2 ) / T (1+2\sum_{i=1}^{l-1}\rho_i^2)/T (1+2i=1l1ρi2)/T 的正态分布, t   r a t i o t\ ratio t ratio 渐进服从标准正态分布。

∣ t   r a t i o ∣ > Z α / 2 |t\ ratio|>Z_{\alpha/2} t ratio>Zα/2 时拒绝 H 0 H_0 H0,其中 Z α / 2 Z_{\alpha/2} Zα/2 是标准正态分布的 100 ( 1 − α / 2 ) 100(1-\alpha/2) 100(1α/2) 分位点。

联合检验

H 0 : ρ 1 = ⋯ = ρ m = 0 H_0:\rho_1=\cdots=\rho_m=0 H0:ρ1==ρm=0 H a : H_a: Ha: 对某 i ∈ { 1 , ⋯   , m } , ρ i ≠ 0 i\in\{1,\cdots,m\},\rho_i\neq0 i{1,,m},ρi=0
Q ( m ) = T ( T + 2 ) ∑ l = 1 m ρ ^ l 2 T − l Q(m)=T(T+2)\sum_{l=1}^m\frac{\hat\rho_l^2}{T-l} Q(m)=T(T+2)l=1mTlρ^l2
{ r t } \{r_t\} {rt} 为满足一定矩条件的独立同分布序列的假定下, Q ( m ) Q(m) Q(m) 渐近服从自由度为 m m m χ 2 \chi^2 χ2 分布。 Q ( m ) → χ m 2 Q(m)\to\chi_m^2 Q(m)χm2

决策规则:当 Q ( m ) > χ α 2 Q(m)>\chi_{\alpha}^2 Q(m)>χα2 时拒绝 H 0 H_0 H0,其中 χ α 2 \chi_{\alpha}^2 χα2 是自由度为 m m m χ 2 \chi^2 χ2 分布的 100 ( 1 − α ) 100(1-\alpha) 100(1α) 分位点。

白噪声

{ ε t } \{\varepsilon_t\} {εt} 为白噪声:
E ( ε t ) = 0 E ( ε t 2 ) = σ 2 E ( ε t ε τ ) = 0 , t ≠ τ E(\varepsilon_t)=0\\E(\varepsilon_t^2)=\sigma^2\\E(\varepsilon_t\varepsilon_{\tau})=0,t\neq\tau E(εt)=0E(εt2)=σ2E(εtετ)=0,t=τ
此外,如果 { ε t } \{\varepsilon_t\} {εt} 随时间的变化是独立的,则称为独立白噪声。

进一步,如果 { ε t } ∼ N ( 0 , σ 2 ) \{\varepsilon_t\}\sim N(0,\sigma^2) {εt}N(0,σ2),则称为高斯白噪声。

线性时间序列

在时间点 t t t

  1. 信息集: { r 1 , r 2 , ⋯   , r t − 1 } ≡ ϝ t − 1 \{r_1,r_2,\cdots,r_{t-1}\}\equiv\digamma_{t-1} {r1,r2,,rt1}ϝt1
  2. r t = c o n d i t i o n a l   m e a n + s h o c k = f u n c t i o n   o f   e l e m e n t s   o f   ϝ t − 1 + a t r_t=conditional \ mean + shock=function \ of \ elements \ of \ \digamma_{t-1}+a_t rt=conditional mean+shock=function of elements of ϝt1+at

给定信息 ϝ t − 1 \digamma_{t-1} ϝt1
r t = μ t + a t = E ( r t ∣ ϝ t − 1 ) + σ t ε t r_t=\mu_t+a_t=E(r_t|\digamma_{t-1})+\sigma_t\varepsilon_t rt=μt+at=E(rtϝt1)+σtεt
μ t \mu_t μt r t r_t rt 的条件均值。

a t a_t at:时刻 t t t 的新息或扰动。

ε t \varepsilon_t εt:独立同分布,均值为0,方差为1。

σ t \sigma_t σt:条件标准误差(波动率)。

在拟合线性时间序列模型之前,我们要测试 μ t \mu_t μt 是否是固定的常数(或: { r t } \{r_t\} {rt} 是否是白噪声),检验方法见上。

如果白噪声假设不被拒绝,则不需要线性时间序列模型!如果白噪声假设被拒绝,我们需要一个线性时间序列模型!

{ r t } \{r_t\} {rt} 称为线性序列,如果它能写成:
r t = μ + ∑ i = 0 ∞ ψ i a t − i r_t=\mu+\sum_{i=0}^{\infin}\psi_ia_{t-i} rt=μ+i=0ψiati
其中 μ \mu μ r t r_t rt 的均值, ψ 0 = 1 \psi_0=1 ψ0=1 { a t } \{a_t\} {at} 是零均值独立同分布的随机变量序列(即为白噪声)。
E ( r t ) = μ , V a r ( r t ) = σ a 2 ∑ i = 0 ∞ ψ i 2 E(r_t)=\mu,Var(r_t)=\sigma_a^2\sum_{i=0}^{\infin}\psi_i^2 E(rt)=μ,Var(rt)=σa2i=0ψi2
其中 σ a 2 \sigma_a^2 σa2 a t a_t at 的方差, { ψ i 2 } \{\psi_i^2\} {ψi2} 必须是收敛序列,即当 i → ∞ , ψ i 2 → 0 i\to\infin,\psi_i^2\to0 i,ψi20
r l = C o v ( r t , r t − l ) = E [ ( ∑ i = 0 ∞ ψ i a t − i ) ( ∑ j = 0 ∞ ψ j a t − l − j ) ] = E ( ∑ i , j = 0 ∞ ψ i ψ j a t − i a t − l − j ) = ∑ j = 0 ∞ ψ j + l ψ j E ( a t − l − j 2 ) = σ a 2 ∑ j = 0 ∞ ψ j ψ j + l r_l=Cov(r_t,r_{t-l})=E[(\sum_{i=0}^{\infin}\psi_ia_{t-i})(\sum_{j=0}^{\infin}\psi_ja_{t-l-j})]\\=E(\sum_{i,j=0}^{\infin}\psi_i\psi_ja_{t-i}a_{t-l-j})\\=\sum_{j=0}^{\infin}\psi_{j+l}\psi_jE(a_{t-l-j}^2)\\=\sigma_a^2\sum_{j=0}^{\infin}\psi_j\psi_{j+l} rl=Cov(rt,rtl)=E[(i=0ψiati)(j=0ψjatlj)]=E(i,j=0ψiψjatiatlj)=j=0ψj+lψjE(atlj2)=σa2j=0ψjψj+l
于是有
ρ l = r l r 0 = ∑ i = 0 ∞ ψ i ψ i + l ∑ i = 0 ∞ ψ i 2 = ∑ i = 0 ∞ ψ i ψ i + l 1 + ∑ i = 1 ∞ ψ i 2 , l ≥ 0 \rho_l=\frac{r_l}{r_0}=\frac{\sum_{i=0}^{\infin}\psi_i\psi_{i+l}}{\sum_{i=0}^{\infin}\psi_i^2}=\frac{\sum_{i=0}^{\infin}\psi_i\psi_{i+l}}{1+\sum_{i=1}^{\infin}\psi_i^2},l\geq0 ρl=r0rl=i=0ψi2i=0ψiψi+l=1+i=1ψi2i=0ψiψi+l,l0

AR模型

AR(1)

r t = ϕ 0 + ϕ 1 r t − 1 + a t r_t=\phi_0+\phi_1r_{t-1}+a_t rt=ϕ0+ϕ1rt1+at

{ a t } \{a_t\} {at} 是均值为0、方差为 σ a 2 \sigma_a^2 σa2 的白噪声序列。

通过递推可得: r t = ϕ 0 ∑ i = 0 t − 1 ϕ 1 i + ϕ i t r 0 + ∑ i = 0 t − 1 ϕ 1 i a t − i r_t=\phi_0\sum_{i=0}^{t-1}\phi_1^i+\phi_i^tr_0+\sum_{i=0}^{t-1}\phi_1^ia_{t-i} rt=ϕ0i=0t1ϕ1i+ϕitr0+i=0t1ϕ1iati

ϕ 1 = 1 \phi_1=1 ϕ1=1 r t = t ϕ 0 + r 0 + ∑ i = 0 t − 1 a t − i r_t=t\phi_0+r_0+\sum_{i=0}^{t-1}a_{t-i} rt=tϕ0+r0+i=0t1ati

∣ ϕ 1 ∣ < 1 |\phi_1|<1 ϕ1<1
t → ∞ , r t → ϕ 0 1 − ϕ 1 + ∑ i = 0 ∞ ϕ 1 i a t − i , E ( r t ) = ϕ 0 1 − ϕ 1 = μ → ϕ 0 = μ ( 1 − ϕ 1 ) → r t − μ = ϕ 1 ( r t − 1 − μ ) + a t t\to\infin,r_t\to\frac{\phi_0}{1-\phi_1}+\sum_{i=0}^{\infin}\phi_1^ia_{t-i},E(r_t)=\frac{\phi_0}{1-\phi_1}=\mu\to\phi_0=\mu(1-\phi_1)\to r_t-\mu=\phi_1(r_{t-1}-\mu)+a_t t,rt1ϕ1ϕ0+i=0ϕ1iati,E(rt)=1ϕ1ϕ0=μϕ0=μ(1ϕ1)rtμ=ϕ1(rt1μ)+at
模型是弱平稳的充分必要条件是: ∣ ϕ 1 ∣ < 1 |\phi_1|<1 ϕ1<1

方差:
r t = ϕ 0 + ϕ 1 r t − 1 + a t V a r ( r t ) = ϕ 1 2 V a r ( r t − 1 ) + V a r ( a t ) V a r ( r t ) = σ a 2 1 − ϕ 1 2 r_t=\phi_0+\phi_1r_{t-1}+a_t\\Var(r_t)=\phi_1^2Var(r_{t-1})+Var(a_t)\\Var(r_t)=\frac{\sigma_a^2}{1-\phi_1^2} rt=ϕ0+ϕ1rt1+atVar(rt)=ϕ12Var(rt1)+Var(at)Var(rt)=1ϕ12σa2
ACF与相关性:
γ 1 = C o v ( r t , r t − 1 ) = C o v [ ϕ 0 + ϕ 1 r t − 1 + a t , r t − 1 ] = ϕ 1 V a r ( r t − 1 ) = ϕ 1 γ 0 γ k = ϕ 1 k γ 0 ρ 1 = ϕ 1 , ρ k = ϕ 1 k \gamma_1=Cov(r_t,r_{t-1})=Cov[\phi_0+\phi_1r_{t-1}+a_t,r_{t-1}]=\phi_1Var(r_{t-1})=\phi_1\gamma_0\\\gamma_k=\phi_1^k\gamma_0\\\rho_1=\phi_1,\rho_k=\phi_1^k γ1=Cov(rt,rt1)=Cov[ϕ0+ϕ1rt1+at,rt1]=ϕ1Var(rt1)=ϕ1γ0γk=ϕ1kγ0ρ1=ϕ1,ρk=ϕ1k
如果是平稳的,ACF会随时间间隔增加呈指数形式减小。

预测:在时间点n: ϝ n = { r n , r n − 1 , …   } \digamma_n=\{r_n,r_{n-1},\dots\} ϝn={rn,rn1,},预测时间点n+l:
r ^ n + l = arg ⁡ min ⁡ g E [ ( r n + l − g ) 2 ∣ ϝ n ] r ^ n + l = E [ r n + l ∣ ϝ n ] l = 1 : r ^ n + 1 = E [ r n + 1 ∣ ϝ n ] = E [ ϕ 0 + ϕ 1 r n + a n + 1 ∣ ϝ n ] = ϕ 0 + ϕ 1 r n e n ( 1 ) = r n + 1 − r ^ n + 1 = a n + 1 V a r ( e n ( 1 ) ) = V a r ( a n + 1 ) = σ a 2 l = 2 : r ^ n + 2 = E [ r n + 2 ∣ ϝ n ] = E [ ϕ 0 + ϕ 1 r n + 1 + a n + 2 ∣ ϝ n ] = E [ ϕ 0 + ϕ 0 ϕ 1 + ϕ 1 2 r n + ϕ 1 a n + 1 + a n + 2 ∣ ϝ n ] = ϕ 0 + ϕ 0 ϕ 1 + ϕ 1 2 r n e n ( 2 ) = r n + 2 − r ^ n + 2 = a n + 2 + ϕ 1 a n + 1 V a r ( e n ( 2 ) ) = V a r ( a n + 2 + ϕ 1 a n + 1 ) = ( 1 + ϕ 1 2 ) σ a 2 \hat r_{n+l}=\arg\min_g E[(r_{n+l}-g)^2|\digamma_n]\\\hat r_{n+l}=E[r_{n+l}|\digamma_n]\\l=1:\hat r_{n+1}=E[r_{n+1}|\digamma_n]=E[\phi_0+\phi_1r_n+a_{n+1}|\digamma_n]=\phi_0+\phi_1r_n\\e_n(1)=r_{n+1}-\hat r_{n+1}=a_{n+1}\\Var(e_n(1))=Var(a_{n+1})=\sigma_a^2\\l=2:\hat r_{n+2}=E[r_{n+2}|\digamma_n]=E[\phi_0+\phi_1r_{n+1}+a_{n+2}|\digamma_n]\\=E[\phi_0+\phi_0\phi_1+\phi_1^2r_n+\phi_1a_{n+1}+a_{n+2}|\digamma_n]=\phi_0+\phi_0\phi_1+\phi_1^2r_n\\e_n(2)=r_{n+2}-\hat r_{n+2}=a_{n+2}+\phi_1a_{n+1}\\Var(e_n(2))=Var(a_{n+2}+\phi_1a_{n+1})=(1+\phi_1^2)\sigma_a^2 r^n+l=arggminE[(rn+lg)2ϝn]r^n+l=E[rn+lϝn]l=1:r^n+1=E[rn+1ϝn]=E[ϕ0+ϕ1rn+an+1ϝn]=ϕ0+ϕ1rnen(1)=rn+1r^n+1=an+1Var(en(1))=Var(an+1)=σa2l=2:r^n+2=E[rn+2ϝn]=E[ϕ0+ϕ1rn+1+an+2ϝn]=E[ϕ0+ϕ0ϕ1+ϕ12rn+ϕ1an+1+an+2ϝn]=ϕ0+ϕ0ϕ1+ϕ12rnen(2)=rn+2r^n+2=an+2+ϕ1an+1Var(en(2))=Var(an+2+ϕ1an+1)=(1+ϕ12)σa2
对于一般的 l l l
r ^ n + l = ϕ 0 ∑ i = 0 l − 1 ϕ 1 i + ϕ 1 l r n e n ( l ) = ∑ i = 0 l − 1 ϕ 1 i a n + l − i V a r ( e n ( l ) ) = σ a 2 ∑ i = 0 l − 1 ϕ 1 2 i \hat r_{n+l}=\phi_0\sum_{i=0}^{l-1}\phi_1^i+\phi_1^lr_n\\e_n(l)=\sum_{i=0}^{l-1}\phi_1^ia_{n+l-i}\\Var(e_n(l))=\sigma_a^2\sum_{i=0}^{l-1}\phi_1^{2i} r^n+l=ϕ0i=0l1ϕ1i+ϕ1lrnen(l)=i=0l1ϕ1ian+liVar(en(l))=σa2i=0l1ϕ12i
特别的,当 l → ∞ l\to\infin l:
r ^ n + l → μ = ϕ 0 1 − ϕ 1 V a r ( e n ( ∞ ) ) = σ a 2 1 − ϕ 1 2 = V a r ( r t ) \hat r_{n+l}\to\mu=\frac{\phi_0}{1-\phi_1}\\Var(e_n(\infin))=\frac{\sigma_a^2}{1-\phi_1^2}=Var(r_t) r^n+lμ=1ϕ1ϕ0Var(en())=1ϕ12σa2=Var(rt)
这种性质称为均值回转(mean-reversion)

AR(2)

r t = ϕ 0 + ϕ 1 r t − 1 + ϕ 2 r t − 2 + a t → ( 1 − ϕ 1 B − ϕ 2 B 2 ) r t = ϕ 0 + a t E ( r t ) = ϕ 0 1 − ϕ 1 − ϕ 2 A C F : ρ 0 = 1 , ρ 1 = ϕ 1 1 − ϕ 2 ρ k = ϕ 1 ρ k − 1 + ϕ 2 ρ k − 2 , k ≥ 2 r_t=\phi_0+\phi_1r_{t-1}+\phi_2r_{t-2}+a_t\to(1-\phi_1B-\phi_2B^2)r_t=\phi_0+a_t\\E(r_t)=\frac{\phi_0}{1-\phi_1-\phi_2}\\ACF:\rho_0=1,\rho_1=\frac{\phi_1}{1-\phi_2}\\\rho_k=\phi_1\rho_{k-1}+\phi_2\rho_{k-2},k\geq2 rt=ϕ0+ϕ1rt1+ϕ2rt2+at(1ϕ1Bϕ2B2)rt=ϕ0+atE(rt)=1ϕ1ϕ2ϕ0ACF:ρ0=1,ρ1=1ϕ2ϕ1ρk=ϕ1ρk1+ϕ2ρk2,k2

平稳条件:使得方程 1 − ϕ 1 x − ϕ 2 x 2 = 0 1-\phi_1x-\phi_2x^2=0 1ϕ1xϕ2x2=0 的根都在单位圆外:
ϕ 1 2 + 4 ϕ 2 > 0 → x 1 , x 2 = ϕ 1 ± ϕ 1 + 4 ϕ 2 − 2 ϕ 2 ϕ 1 2 + 4 ϕ 2 < 0 → x 1 , x 2 = ϕ 1 ± i ϕ 1 + 4 ϕ 2 − 2 ϕ 2 \phi_1^2+4\phi_2>0\to x_1,x_2=\frac{\phi_1\pm\sqrt{\phi_1+4\phi_2}}{-2\phi_2}\\\phi_1^2+4\phi_2<0\to x_1,x_2=\frac{\phi_1\pm i\sqrt{\phi_1+4\phi_2}}{-2\phi_2} ϕ12+4ϕ2>0x1,x2=2ϕ2ϕ1±ϕ1+4ϕ2 ϕ12+4ϕ2<0x1,x2=2ϕ2ϕ1±iϕ1+4ϕ2
也即AR(2)模型的两个特征根 ∣ ω 1 ∣ = ∣ 1 x 1 ∣ < 1 , ∣ ω 2 ∣ = ∣ 1 x 2 ∣ < 1 |\omega_1|=|\frac{1}{x_1}|<1,|\omega_2|=|\frac{1}{x_2}|<1 ω1=x11<1,ω2=x21<1

  1. 实值特征根:
    ( 1 − ω 1 B ) ( 1 − ω 2 B ) r t = ϕ 0 + a t r t = b 0 + ∑ j = 0 ∞ α j a t − j + A 1 ω 1 t + A 2 ω 2 t (1-\omega_1B)(1-\omega_2B)r_t=\phi_0+a_t\\r_t=b_0+\sum_{j=0}^{\infin}\alpha_ja_{t-j}+A_1\omega_1^t+A_2\omega_2^t (1ω1B)(1ω2B)rt=ϕ0+atrt=b0+j=0αjatj+A1ω1t+A2ω2t

  2. 虚值特征根:
    ω 1 , ω 2 = − ϕ 2 ( ϕ 1 2 − ϕ 2 ± − ϕ 1 2 − 4 ϕ 2 2 − ϕ 2 i ) w 1 = γ [ cos ⁡ θ + i sin ⁡ θ ] , w 2 = γ [ cos ⁡ θ − i sin ⁡ θ ] , k = 2 π θ , θ = arccos ⁡ [ ϕ 1 2 − ϕ 2 ] r t = b 0 + ∑ j = 0 ∞ α j a t − j + β 1 γ t cos ⁡ ( θ t + β 2 ) , γ = ∣ w i ∣ \omega_1,\omega_2=\sqrt{-\phi_2}(\frac{\phi_1}{2\sqrt{-\phi_2}}\pm\frac{\sqrt{-\phi_1^2-4\phi_2}}{2\sqrt{-\phi_2}}i)\\w_1=\gamma[\cos\theta+i\sin\theta],w_2=\gamma[\cos\theta-i\sin\theta],k=\frac{2\pi}{\theta},\theta=\arccos[\frac{\phi_1}{2\sqrt{-\phi_2}}]\\r_t=b_0+\sum_{j=0}^{\infin}\alpha_ja_{t-j}+\beta_1\gamma^t\cos(\theta t+\beta_2),\gamma=|w_i| ω1,ω2=ϕ2 (2ϕ2 ϕ1±2ϕ2 ϕ124ϕ2 i)w1=γ[cosθ+isinθ],w2=γ[cosθisinθ],k=θ2π,θ=arccos[2ϕ2 ϕ1]rt=b0+j=0αjatj+β1γtcos(θt+β2),γ=wi

AR§

r t = ϕ 0 + ϕ 1 r t − 1 + ϕ 2 r t − 2 + ⋯ + ϕ p r t − p + a t ( 1 − ϕ 1 B − ϕ 2 B 2 − ⋯ − ϕ p B p ) r t = ϕ 0 + a t E ( r t ) = ϕ 0 1 − ϕ 1 − ϕ 2 − ⋯ − ϕ p r_t=\phi_0+\phi_1r_{t-1}+\phi_2r_{t-2}+\cdots+\phi_pr_{t-p}+a_t\\(1-\phi_1B-\phi_2B^2-\cdots-\phi_pB^p)r_t=\phi_0+a_t\\E(r_t)=\frac{\phi_0}{1-\phi_1-\phi_2-\cdots-\phi_p} rt=ϕ0+ϕ1rt1+ϕ2rt2++ϕprtp+at(1ϕ1Bϕ2B2ϕpBp)rt=ϕ0+atE(rt)=1ϕ1ϕ2ϕpϕ0

平稳条件:使得方程 1 − ϕ 1 x − ϕ 2 x 2 − ⋯ − ϕ p x p = 0 1-\phi_1x-\phi_2x^2-\cdots-\phi_px^p=0 1ϕ1xϕ2x2ϕpxp=0 的根都在单位圆外。

ACF满足:
( 1 − ϕ 1 B − ϕ 2 B 2 − ⋯ − ϕ p B p ) p l = 0 , l > 0 (1-\phi_1B-\phi_2B^2-\cdots-\phi_pB^p)p_l=0,l>0 (1ϕ1Bϕ2B2ϕpBp)pl=0,l>0

识别AR模型

用PACF

最小二乘估计如下模型:
r t = ϕ 0 , 1 + ϕ 1 , 1 r t − 1 + e 1 t r t = ϕ 0 , 2 + ϕ 1 , 2 r t − 1 + ϕ 2 , 2 r t − 2 + e 2 t r t = ϕ 0 , 3 + ϕ 1 , 3 r t − 1 + ϕ 2 , 3 r t − 2 + ϕ 3 , 3 r t − 3 + e 3 t r t = ϕ 0 , 4 + ϕ 1 , 4 r t − 1 + ϕ 2 , 4 r t − 2 + ϕ 3 , 4 r t − 3 + ϕ 4 , 4 r t − 4 + e 4 t r_t=\phi_{0,1}+\phi_{1,1}r_{t-1}+e_{1t}\\r_t=\phi_{0,2}+\phi_{1,2}r_{t-1}+\phi_{2,2}r_{t-2}+e_{2t}\\r_t=\phi_{0,3}+\phi_{1,3}r_{t-1}+\phi_{2,3}r_{t-2}+\phi_{3,3}r_{t-3}+e_{3t}\\r_t=\phi_{0,4}+\phi_{1,4}r_{t-1}+\phi_{2,4}r_{t-2}+\phi_{3,4}r_{t-3}+\phi_{4,4}r_{t-4}+e_{4t} rt=ϕ0,1+ϕ1,1rt1+e1trt=ϕ0,2+ϕ1,2rt1+ϕ2,2rt2+e2trt=ϕ0,3+ϕ1,3rt1+ϕ2,3rt2+ϕ3,3rt3+e3trt=ϕ0,4+ϕ1,4rt1+ϕ2,4rt2+ϕ3,4rt3+ϕ4,4rt4+e4t
PACF即为 ϕ ^ p , p \hat\phi_{p,p} ϕ^p,p

  1. 当样本容量 T T T 趋于无穷时, ϕ ^ p , p \hat\phi_{p,p} ϕ^p,p 收敛于 ϕ p \phi_p ϕp
  2. 对于 l > p l>p l>p ϕ ^ l , l \hat\phi_{l,l} ϕ^l,l 收敛于0。
  3. 对于 l > p l>p l>p ϕ ^ l , l \hat\phi_{l,l} ϕ^l,l 的渐进方差为 1 / T 1/T 1/T ϕ ^ l , l ∼ N ( 0 , 1 T ) \hat\phi_{l,l}\sim N(0,\frac{1}{T}) ϕ^l,lN(0,T1)

信息准则

A I C ( l ) = ln ⁡ ( σ ~ l 2 ) + 2 l T B I C ( l ) = ln ⁡ ( σ ~ l 2 ) + l ln ⁡ ( T ) T H Q I C ( l ) = ln ⁡ ( σ ~ l 2 ) + 2 l ln ⁡ ( ln ⁡ ( T ) ) T AIC(l)=\ln(\tilde\sigma_l^2)+\frac{2l}{T}\\BIC(l)=\ln(\tilde\sigma_l^2)+\frac{l\ln(T)}{T}\\HQIC(l)=\ln(\tilde\sigma_l^2)+\frac{2l\ln(\ln(T))}{T} AIC(l)=ln(σ~l2)+T2lBIC(l)=ln(σ~l2)+Tlln(T)HQIC(l)=ln(σ~l2)+T2lln(ln(T))

前一项衡量的是模型拟合优度,后一项为惩罚函数。 σ ~ l 2 \tilde\sigma_l^2 σ~l2 σ a 2 \sigma_a^2 σa2 的最大似然估计。

参数估计

在给定前 p p p 个观测值的前提下,我们有
r t = ϕ 0 + ϕ 1 r t − 1 + ⋯ + ϕ p r t − p + a t , t = p + 1 , ⋯   , T r_t=\phi_0+\phi_1r_{t-1}+\cdots+\phi_pr_{t-p}+a_t,t=p+1,\cdots,T rt=ϕ0+ϕ1rt1++ϕprtp+at,t=p+1,,T
其中的参数可用最小二乘法估计,记 ϕ ^ i \hat\phi_i ϕ^i ϕ i \phi_i ϕi 的估计,所拟合的模型和对应的残差为
r ^ t = ϕ ^ 0 + ϕ ^ 1 r t − 1 + ⋯ + ϕ ^ p r t − p a ^ t = r t − r ^ t σ ^ a 2 = ∑ t = p + 1 T a ^ t 2 T − 2 p − 1 \hat r_t=\hat\phi_0+\hat\phi_1r_{t-1}+\cdots+\hat\phi_pr_{t-p}\\\hat a_t=r_t-\hat r_t\\\hat\sigma_a^2=\frac{\sum_{t=p+1}^T\hat a_t^2}{T-2p-1} r^t=ϕ^0+ϕ^1rt1++ϕ^prtpa^t=rtr^tσ^a2=T2p1t=p+1Ta^t2

模型的检验

如果模型是充分的,则其残差序列应是白噪声。残差的样本自相关函数和Ljung-Box统计量可用来检验 a ^ t \hat a_t a^t 与一个白噪声的接近程度。

对 AR§ 模型,Ljung-Box统计量 Q ( m ) Q(m) Q(m) 渐进服从自由度为 m − p m-p mp χ 2 \chi^2 χ2 分布,其中 p p p 是所用模型中AR系数的个数。如果常数项被包括进来,则自由度为 m − p − 1 m-p-1 mp1

MA模型

MA(1)

r t = μ + a t − θ a t − 1 , r t − 1 = μ + a t − 1 − θ a t − 2 E ( r t ) = μ V a r ( r t ) = ( 1 + θ 2 ) σ a 2 C o v ( r t , r t − 1 ) = − θ σ a 2 C o v ( r t , r t − l ) = 0 , l > 1 r_t=\mu+a_t-\theta a_{t-1},r_{t-1}=\mu+a_{t-1}-\theta a_{t-2}\\E(r_t)=\mu\\Var(r_t)=(1+\theta^2)\sigma_a^2\\Cov(r_t,r_{t-1})=-\theta\sigma_a^2\\Cov(r_t,r_{t-l})=0,l>1 rt=μ+atθat1,rt1=μ+at1θat2E(rt)=μVar(rt)=(1+θ2)σa2Cov(rt,rt1)=θσa2Cov(rt,rtl)=0,l>1

MA模型总是弱平稳的。

ACF:
ρ 1 = − θ 1 + θ 2 p l = 0 , l > 1 \rho_1=\frac{-\theta}{1+\theta^2}\\p_l=0,l>1 ρ1=1+θ2θpl=0,l>1
ACF是识别一个MA模型的阶的有用工具。

预测:在时间点n: ϝ n = { r n , r n − 1 , …   } \digamma_n=\{r_n,r_{n-1},\dots\} ϝn={rn,rn1,},预测时间点n+l:
l = 1 : r ^ n + 1 = E ( r n + 1 ∣ ϝ n ) = E ( μ + a n + 1 − θ a n ∣ ϝ n ) = μ − θ a n e n ( 1 ) = a n + 1 V a r ( e n ( 1 ) ) = V a r ( a n + 1 ) = σ a 2 l=1:\hat r_{n+1}=E(r_{n+1}|\digamma_n)=E(\mu+a_{n+1}-\theta a_n|\digamma_n)=\mu-\theta a_n\\e_n(1)=a_{n+1}\\Var(e_n(1))=Var(a_{n+1})=\sigma_a^2 l=1:r^n+1=E(rn+1ϝn)=E(μ+an+1θanϝn)=μθanen(1)=an+1Var(en(1))=Var(an+1)=σa2
多步预测:
r ^ n + l = μ , l ≥ 2 e n ( l ) = a n + l − θ a n + l − 1 V a r ( e n ( l ) ) = V a r ( a n + l − θ a n + l − 1 ) = ( 1 + θ 2 ) σ a 2 \hat r_{n+l}=\mu,l\geq2\\e_n(l)=a_{n+l}-\theta a_{n+l-1}\\Var(e_n(l))=Var(a_{n+l}-\theta a_{n+l-1})=(1+\theta^2)\sigma_a^2 r^n+l=μ,l2en(l)=an+lθan+l1Var(en(l))=Var(an+lθan+l1)=(1+θ2)σa2
可逆性:零均值MA(1)模型:
r t = a t − θ a t − 1 , a t ∼ N ( 0 , σ 2 ) , i . i . d , a 0 = 0 a t = r t + θ a t − 1 = r t + θ ( r t − 1 + θ a t − 2 ) = r t + θ r t − 1 + θ 2 ( r t − 2 + θ a t − 3 ) = ⋯ = ∑ i = 0 t − 1 θ i r t − i r t = a t − ∑ i = 1 t − 1 θ i r t − i r_t=a_t-\theta a_{t-1},a_t\sim N(0,\sigma^2),i.i.d,a_0=0\\a_t=r_t+\theta a_{t-1}=r_t+\theta(r_{t-1}+\theta a_{t-2})=r_t+\theta r_{t-1}+\theta^2(r_{t-2}+\theta a_{t-3})=\cdots=\sum_{i=0}^{t-1}\theta^ir_{t-i}\\r_t=a_t-\sum_{i=1}^{t-1}\theta^ir_{t-i} rt=atθat1,atN(0,σ2),i.i.d,a0=0at=rt+θat1=rt+θ(rt1+θat2)=rt+θrt1+θ2(rt2+θat3)==i=0t1θirtirt=ati=1t1θirti
可逆性条件: ∣ θ ∣ < 1 |\theta|<1 θ<1

{ r 1 , r 2 , ⋯   , r T − 1 , r T } \{r_1,r_2,\cdots,r_{T-1},r_T\} {r1,r2,,rT1,rT} 的对数极大似然:
{ a t } t = 1 T , i . i . d , N ( 0 , σ 2 ) ∏ t = 1 T 1 2 π σ exp ⁡ ( − a t 2 2 σ 2 ) = ∏ t = 1 T 1 2 π σ exp ⁡ ( − [ ∑ i = 0 t − 1 θ i r t − i ] 2 2 σ 2 ) → max ⁡ ln ⁡ ( ∏ t = 1 T 1 2 π σ exp ⁡ ( − [ ∑ i = 0 t − 1 θ i r t − i ] 2 2 σ 2 ) ) \{a_t\}^T_{t=1},i.i.d,N(0,\sigma^2)\\\prod_{t=1}^T\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{a_t^2}{2\sigma^2})=\prod_{t=1}^T\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{[\sum_{i=0}^{t-1}\theta^ir_{t-i}]^2}{2\sigma^2})\\\to \max\ln(\prod_{t=1}^T\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{[\sum_{i=0}^{t-1}\theta^ir_{t-i}]^2}{2\sigma^2})) {at}t=1T,i.i.d,N(0,σ2)t=1T2π σ1exp(2σ2at2)=t=1T2π σ1exp(2σ2[i=0t1θirti]2)maxln(t=1T2π σ1exp(2σ2[i=0t1θirti]2))

MA(2)

r t = μ + a t − θ 1 a t − 1 − θ 2 a t − 2 = μ + ( 1 − θ 1 B − θ 2 B 2 ) a t E ( r t ) = μ V a r ( r t ) = ( 1 + θ 1 2 + θ 2 2 ) σ a 2 r_t=\mu+a_t-\theta_1a_{t-1}-\theta_2a_{t-2}=\mu+(1-\theta_1B-\theta_2B^2)a_t\\E(r_t)=\mu\\Var(r_t)=(1+\theta_1^2+\theta_2^2)\sigma_a^2 rt=μ+atθ1at1θ2at2=μ+(1θ1Bθ2B2)atE(rt)=μVar(rt)=(1+θ12+θ22)σa2

ACF:
ρ 1 = − θ 1 + θ 1 θ 2 1 + θ 1 2 + θ 2 2 , ρ 2 = − θ 2 1 + θ 1 2 + θ 2 2 , ρ l = 0 , l > 2 \rho_1=\frac{-\theta_1+\theta_1\theta_2}{1+\theta_1^2+\theta_2^2},\rho_2=\frac{-\theta_2}{1+\theta_1^2+\theta_2^2},\rho_l=0,l>2 ρ1=1+θ12+θ22θ1+θ1θ2,ρ2=1+θ12+θ22θ2,ρl=0,l>2

可逆性:使 1 − θ 1 x − θ 2 x 2 = 0 1-\theta_1x-\theta_2x^2=0 1θ1xθ2x2=0 的两个解 ∣ x 1 ∣ > 1 , ∣ x 2 ∣ > 1 |x_1|>1,|x_2|>1 x1>1,x2>1

MA(q)

r t = μ + a t − θ 1 a t − 1 − θ 2 a t − 2 − ⋯ − θ q a t − q = μ + ( 1 − θ 1 B − θ 2 B 2 − ⋯ − θ q B q ) a t , q > 0 E ( r t ) = μ V a r ( r t ) = ( 1 + θ 1 2 + θ 2 2 + ⋯ + θ q 2 ) σ a 2 r s = { ( − θ s + θ s + 1 θ 1 + θ s + 2 θ 2 + ⋯ + θ q θ q − s ) σ a 2 , s ≤ q 0 , s > q r_t=\mu+a_t-\theta_1a_{t-1}-\theta_2a_{t-2}-\cdots-\theta_qa_{t-q}=\mu+(1-\theta_1B-\theta_2B^2-\cdots-\theta_qB^q)a_t,q>0\\E(r_t)=\mu\\Var(r_t)=(1+\theta_1^2+\theta_2^2+\cdots+\theta_q^2)\sigma_a^2\\r_s=\begin{cases}(-\theta_s+\theta_{s+1}\theta_1+\theta_{s+2}\theta_2+\cdots+\theta_q\theta_{q-s})\sigma_a^2,s\leq q\\0,s>q\end{cases} rt=μ+atθ1at1θ2at2θqatq=μ+(1θ1Bθ2B2θqBq)at,q>0E(rt)=μVar(rt)=(1+θ12+θ22++θq2)σa2rs={(θs+θs+1θ1+θs+2θ2++θqθqs)σa2,sq0,s>q

可逆性:使 1 − θ 1 x − θ 2 x 2 − ⋯ − θ q x q = 0 1-\theta_1x-\theta_2x^2-\cdots-\theta_qx^q=0 1θ1xθ2x2θqxq=0 的所有解绝对值都大于一。

估计

通常用最大似然法。有两种方法求MA模型的似然函数。第一种是假设初始的“扰动”(即 a t , t ≤ 0 a_t,t\leq0 at,t0)都是0,由 a 1 = r 1 − μ , a 2 = r 2 − μ + θ 1 a 1 , ⋯ a_1=r_1-\mu,a_2=r_2-\mu+\theta_1a_1,\cdots a1=r1μ,a2=r2μ+θ1a1,,可递推得到计算似然函数所需要的“扰动”,称为条件似然法,所得的估计是条件似然最大估计。第二种方法是把初始“扰动” a t ( t ≤ 0 ) a_t(t\leq0) at(t0) 当做模型的附加参数与其他参数一起估计起来,这种方法称为精确似然法。精确似然估计优于条件似然估计。

模型检验和预测

模型检验:检验残差序列(是否为白噪声)

预测,用 { a t } ^ \hat{\{a_t\}} {at}^ 来代替模型中的 { a t } \{a_t\} {at}

ARMA模型

ARMA(1)

r t = ϕ 0 + ϕ 1 r t − 1 + a t − θ 1 a t − 1 ( 1 − ϕ 1 B ) r t = ϕ 0 + ( 1 − θ 1 B ) a t E ( r t ) = ϕ 0 1 − ϕ 1 r_t=\phi_0+\phi_1r_{t-1}+a_t-\theta_1a_{t-1}\\(1-\phi_1B)r_t=\phi_0+(1-\theta_1B)a_t\\E(r_t)=\frac{\phi_0}{1-\phi_1} rt=ϕ0+ϕ1rt1+atθ1at1(1ϕ1B)rt=ϕ0+(1θ1B)atE(rt)=1ϕ1ϕ0

其中 { a t } \{a_t\} {at} 是一个白噪声序列。

平稳性:与AR(1)相同。

可逆性:与MA(1)相同。
C o v ( r t , a t ) = σ a 2 V a r ( r t ) = V a r ( ϕ 1 r t − 1 + a t − θ 1 a t − 1 ) = ϕ 1 2 V a r ( r t − 1 ) − 2 ϕ 1 θ 1 σ a 2 + ( 1 + θ 1 2 ) σ a 2 V a r ( r t ) = ( 1 − 2 ϕ 1 θ 1 + θ 1 2 ) σ a 2 1 − ϕ 1 2 Cov(r_t,a_t)=\sigma_a^2\\ Var(r_t)=Var(\phi_1r_{t-1}+a_t-\theta_1a_{t-1})=\phi_1^2Var(r_{t-1})-2\phi_1\theta_1\sigma_a^2+(1+\theta_1^2)\sigma_a^2\\Var(r_t)=\frac{(1-2\phi_1\theta_1+\theta_1^2)\sigma_a^2}{1-\phi_1^2} Cov(rt,at)=σa2Var(rt)=Var(ϕ1rt1+atθ1at1)=ϕ12Var(rt1)2ϕ1θ1σa2+(1+θ12)σa2Var(rt)=1ϕ12(12ϕ1θ1+θ12)σa2
ACF:假设 ϕ 0 = 0 \phi_0=0 ϕ0=0
γ 1 = E ( r t r t − 1 ) = ϕ 1 E ( r t − 1 2 ) − θ 1 E ( a t − 1 r t − 1 ) γ 1 = ϕ 1 V a r ( r t − 1 ) − θ 1 σ a 2 ρ 1 = ϕ 1 − θ 1 σ a 2 γ 0 l > 1 : γ l = E ( r t r t − l ) = ϕ 1 E ( r t − 1 r t − l ) γ l = ϕ 1 γ l − 1 ρ l = ϕ 1 ρ l − 1 \gamma_1=E(r_tr_{t-1})=\phi_1E(r_{t-1}^2)-\theta_1E(a_{t-1}r_{t-1})\\\gamma_1=\phi_1Var(r_{t-1})-\theta_1\sigma_a^2\\\rho_1=\phi_1-\frac{\theta_1\sigma_a^2}{\gamma_0}\\l>1:\gamma_l=E(r_tr_{t-l})=\phi_1E(r_{t-1}r_{t-l})\\\gamma_l=\phi_1\gamma_{l-1}\\\rho_l=\phi_1\rho_{l-1} γ1=E(rtrt1)=ϕ1E(rt12)θ1E(at1rt1)γ1=ϕ1Var(rt1)θ1σa2ρ1=ϕ1γ0θ1σa2l>1:γl=E(rtrtl)=ϕ1E(rt1rtl)γl=ϕ1γl1ρl=ϕ1ρl1
ARMA(1,1)模型的ACF不能在任意有限间隔后截尾,PACF也不能在有限间隔后截尾,指数衰减均从间隔2开始。

ARMA(p,q)

r t = ϕ 0 + ∑ i = 1 p ϕ i r t − i + a t − ∑ i = 1 q θ i a t − i ( 1 − ϕ 1 B − ⋯ − ϕ p B p ) r t = ϕ 0 + ( 1 − θ 1 B − ⋯ − θ q B q ) a t r_t=\phi_0+\sum_{i=1}^p\phi_ir_{t-i}+a_t-\sum_{i=1}^q\theta_ia_{t-i}\\(1-\phi_1B-\cdots-\phi_pB^p)r_t=\phi_0+(1-\theta_1B-\cdots-\theta_qB^q)a_t rt=ϕ0+i=1pϕirti+ati=1qθiati(1ϕ1BϕpBp)rt=ϕ0+(1θ1BθqBq)at

其中 { a t } \{a_t\} {at} 是白噪声序列, p , q p,q p,q没有公因子。

平稳性:与AR§相同。

可逆性:与MA(q)相同。
E ( r t ) = ϕ 0 1 − ϕ 1 − ⋯ − ϕ p E(r_t)=\frac{\phi_0}{1-\phi_1-\cdots-\phi_p} E(rt)=1ϕ1ϕpϕ0

识别、估计和检验

识别:用AIC、BIC、HQIC。

估计:用条件极大似然估计法或精确极大似然估计法。

模型检验:检验残差项是否为白噪声。如果模型是正确的,Ljung-Box统计量 Q ( m ) Q(m) Q(m) 渐进服从自由度为 m − g m-g mg χ 2 \chi^2 χ2 分布,其中 g g g 是所用模型中AR或MA系数的个数。如果常数项被包括进来,则自由度为 m − g − 1 m-g-1 mg1

预测

只要将MA部分对低步数预测的影响进行调整后,ARMA(p,q)模型的预测就会与AR§模型的预测有相似特征。设预测原点为 h h h ϝ h \digamma_h ϝh 为在 h h h 时刻所能得到的信息集合, r h + 1 r_{h+1} rh+1 的向前一步预测为:
r ^ h + 1 = E ( r h + 1 ∣ ϝ h ) = ϕ 0 + ∑ i = 1 p ϕ i r h + 1 − i − ∑ i = 1 q θ i a h + 1 − i e h + 1 = r h + 1 − r ^ h + 1 = a h + 1 V a r ( e h + 1 ) = σ a 2 \hat r_{h+1}=E(r_{h+1}|\digamma_h)=\phi_0+\sum_{i=1}^p\phi_ir_{h+1-i}-\sum_{i=1}^q\theta_ia_{h+1-i}\\e_{h+1}=r_{h+1}-\hat r_{h+1}=a_{h+1}\\Var(e_{h+1})=\sigma_a^2 r^h+1=E(rh+1ϝh)=ϕ0+i=1pϕirh+1ii=1qθiah+1ieh+1=rh+1r^h+1=ah+1Var(eh+1)=σa2
对于向前 l l l 步预测:
r ^ h + l = E ( r h + l ∣ ϝ h ) = ϕ 0 + ∑ i = 1 p ϕ i r ^ h + l − i − ∑ i = 1 q θ i a h + l − i \hat r_{h+l}=E(r_{h+l}|\digamma_{h})=\phi_0+\sum_{i=1}^p\phi_i\hat r_{h+l-i}-\sum_{i=1}^q\theta_ia_{h+l-i} r^h+l=E(rh+lϝh)=ϕ0+i=1pϕir^h+lii=1qθiah+li
其中,当 l − i ≤ 0 l-i\leq0 li0 时, r ^ h + l − i = r h + l − i \hat r_{h+l-i}=r_{h+l-i} r^h+li=rh+li;当 l − i > 0 l-i>0 li>0 时, a h + l − i = 0 a_{h+l-i}=0 ah+li=0;当 l − i ≤ 0 l-i\leq0 li0 时, a h + l − i = a h + l − i a_{h+l-i}=a_{h+l-i} ah+li=ah+li

ARMA模型的另两种表示

给定两个多项式:
ϕ ( B ) = 1 − ∑ i = 1 p ϕ i B i , θ ( B ) = 1 − ∑ i = 1 q θ i B i \phi(B)=1-\sum_{i=1}^p\phi_iB^i,\theta(B)=1-\sum_{i=1}^q\theta_iB^i ϕ(B)=1i=1pϕiBi,θ(B)=1i=1qθiBi
有:
θ ( B ) ϕ ( B ) = 1 + ψ 1 B + ψ 2 B 2 + ⋯ ≡ ψ ( B ) ϕ ( B ) θ ( B ) = 1 − π 1 B − π 2 B 2 − ⋯ ≡ π ( B ) \frac{\theta(B)}{\phi(B)}=1+\psi_1B+\psi_2B^2+\cdots\equiv\psi(B)\\\frac{\phi(B)}{\theta(B)}=1-\pi_1B-\pi_2B^2-\cdots\equiv\pi(B) ϕ(B)θ(B)=1+ψ1B+ψ2B2+ψ(B)θ(B)ϕ(B)=1π1Bπ2B2π(B)
AR表示:
r t = ϕ 0 1 − θ 1 − ⋯ − θ q + π 1 r t − 1 + π 2 r t − 2 + π 3 r t − 3 + ⋯ + a t r_t=\frac{\phi_0}{1-\theta_1-\cdots-\theta_q}+\pi_1r_{t-1}+\pi_2r_{t-2}+\pi_3r_{t-3}+\cdots+a_t rt=1θ1θqϕ0+π1rt1+π2rt2+π3rt3++at
这个表示给出了当前收益率 r t r_t rt 对过去收益率 r t − i , i > 0 r_{t-i},i>0 rti,i>0 的依赖关系。

MA表示:
r t = μ + a t + ψ 1 a t − 1 + ψ 2 a t − 2 + ⋯ = μ + ψ ( B ) a t μ = E ( r t ) = ϕ 0 1 − ϕ 1 − ⋯ − ϕ p r_t=\mu+a_t+\psi_1a_{t-1}+\psi_2a_{t-2}+\cdots=\mu+\psi(B)a_t\\\mu=E(r_t)=\frac{\phi_0}{1-\phi_1-\cdots-\phi_p} rt=μ+at+ψ1at1+ψ2at2+=μ+ψ(B)atμ=E(rt)=1ϕ1ϕpϕ0
这个表示说明了过去的“扰动” a t − i , i > 0 a_{t-i},i>0 ati,i>0 对当前收益 r t r_t rt 的影响。

样本外预测

例:如果 { r t } \{r_t\} {rt} 包含150个观测点,运用前100个观测点去估计AR(1)和MA(1)并分别去预测 r 100 + 1 r_{100+1} r100+1。将这两组预测记为 f 11 , f 21 f_{11},f_{21} f11,f21,将这两组的预测误差记为 e 11 , e 21 e_{11},e_{21} e11,e21
e 11 = r 101 − f 11 , e 21 = r 101 − f 21 e_{11}=r_{101}-f_{11},e_{21}=r_{101}-f_{21} e11=r101f11,e21=r101f21
运用前101个观测点重新估计AR(1)和MA(1),将两组预测记为 f 12 , f 22 f_{12},f_{22} f12,f22,获得另外两个预测误差。
e 12 = r 102 − f 12 , e 22 = r 102 − f 22 e_{12}=r_{102}-f_{12},e_{22}=r_{102}-f_{22} e12=r102f12,e22=r102f22
继续运用这个方法获得两组一步向前预测误差—— { e 1 j } j = 1 50 , { e 2 j } j = 1 50 \{e_{1j}\}_{j=1}^{50},\{e_{2j}\}_{j=1}^{50} {e1j}j=150,{e2j}j=150,每组包含50个观测值。

Mean Square Prediction Error(MSPE)

如果有 H H H 个观测,MSPE可以表示为:
M S P E = 1 H ∑ j = 1 H e j 2 MSPE=\frac{1}{H}\sum_{j=1}^He_j^2 MSPE=H1j=1Hej2

Granger-Newbold检验

我们比较两个模型的预测误差。

假设:

  1. 预测误差是零均值的,且为正态分布
  2. 预测误差是序列不相关的

构造:
x j = e 1 j + e 2 j , z j = e 1 j − e 2 j , j = 1 , ⋯   , H x_j=e_{1j}+e_{2j},z_j=e_{1j}-e_{2j},j=1,\cdots,H xj=e1j+e2j,zj=e1je2j,j=1,,H
则:
γ x z = c o v ( x , z ) = c o v ( e 1 j + e 2 j , e 1 j − e 2 j ) = E ( e 1 j 2 − e 2 j 2 ) \gamma_{xz}=cov(x,z)=cov(e_{1j}+e_{2j},e_{1j}-e_{2j})=E(e_{1j}^2-e_{2j}^2) γxz=cov(x,z)=cov(e1j+e2j,e1je2j)=E(e1j2e2j2)
在两个模型预测精度相等的零假设下, { x j } 、 { z j } \{x_j\}、\{z_j\} {xj}{zj} 是不相关的,即 γ x z = 0 \gamma_{xz}=0 γxz=0

如果 γ x z > 0 \gamma_{xz}>0 γxz>0,第一个模型有更大的MSPE。

如果 γ x z < 0 \gamma_{xz}<0 γxz<0,第二个模型有更大的MSPE。

ρ ^ x z \hat\rho_{xz} ρ^xz 表示 { x j } 、 { z j } \{x_j\}、\{z_j\} {xj}{zj} 的样本相关系数,假设1、2支持:
ρ ^ x z ( 1 − ρ ^ x z 2 ) / ( H − 1 ) ∼ t H − 1 \frac{\hat\rho_{xz}}{\sqrt{(1-\hat\rho_{xz}^2)/(H-1)}}\sim t_{H-1} (1ρ^xz2)/(H1) ρ^xztH1
H 0 : ρ x z = 0 ; H 1 : ρ x z > 0    o r    H 1 : ρ x z < 0 H_0:\rho_{xz}=0;H_1:\rho_{xz}>0\ \ or\ \ H_1:\rho_{xz}<0 H0:ρxz=0;H1:ρxz>0  or  H1:ρxz<0

存在的问题:真实的数据通常不满足假设1、2。

Diebold-Mariano检验

令时刻 j j j 的预测误差的损失函数为 g ( e j ) g(e_j) g(ej)。在均方误差形式下,损失为 e j 2 e_j^2 ej2

可以写出损失差 d j = g ( e 1 j ) − g ( e 2 j ) d_j=g(e_{1j})-g(e_{2j}) dj=g(e1j)g(e2j),平均损失差可表示为:
d ˉ = 1 H ∑ j = 1 H [ g ( e 1 j ) − g ( e 2 j ) ] \bar d=\frac{1}{H}\sum_{j=1}^H[g(e_{1j})-g(e_{2j})] dˉ=H1j=1H[g(e1j)g(e2j)]
H 0 : 预 测 精 度 相 同 ; H 1 : 模 型 1 更 好 ( E ( d ˉ ) < 0 )    o r    H 1 : 模 型 2 更 好 ( E ( d ˉ ) > 0 ) H_0:预测精度相同;H_1:模型1更好(E(\bar d)<0)\ \ or\ \ H_1:模型2更好(E(\bar d)>0) H0:;H1:1(E(dˉ)<0)  or  H1:2(E(dˉ)>0)

在相等的预测精度的零假设下,有: E ( d ˉ ) = E ( d j ) = 0 E(\bar d)=E(d_j)=0 E(dˉ)=E(dj)=0

在零假设下,中心极限定理表明, d ˉ \bar d dˉ 服从均值为0,、方差为 v a r ( d ˉ ) var(\bar d) var(dˉ) 的正态分布。

  1. 如果 { d j } \{d_j\} {dj} 序列不相关,样本方差为 γ ^ \hat\gamma γ^ v a r ( d ˉ ) var(\bar d) var(dˉ) 的估计值为 γ ^ H − 1 \frac{\hat\gamma}{H-1} H1γ^
    d ˉ γ ^ / ( H − 1 ) → d N ( 0 , 1 ) , H → ∞ \frac{\bar d}{\sqrt{\hat\gamma/(H-1)}}\to^dN(0,1),H\to\infin γ^/(H1) dˉdN(0,1),H

  2. 如果 { d j } \{d_j\} {dj} 序列相关,例如:Newey-West方差估计值:
    d ˉ v a r ( d ˉ ) ^ → d N ( 0 , 1 ) , H → ∞ \frac{\bar d}{\sqrt{\hat{var(\bar d)}}}\to^dN(0,1),H\to\infin var(dˉ)^ dˉdN(0,1),H
    其中 v a r ( d ˉ ) ^ \hat{var(\bar d)} var(dˉ)^ v a r ( d ˉ ) var(\bar d) var(dˉ) 是准确估计。

  • 4
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值