NNDL 作业1:第二章课后题

本文分析了平方损失函数为何不适合用于分类问题,因为其不仅关注正确分类,还试图减少错误分类的影响。而交叉熵损失函数则只关注正确分类,更适合多分类任务。同时,解释了在三分类问题中,如何计算精确率、召回率和F1值,以及宏平均和微平均的计算方法。
摘要由CSDN通过智能技术生成

习题 2-1 分析为什么平方损失函数不适用于分类问题 , 交叉熵损失函数不适用于回归问题.

        答:从平方损失函数运用到多分类场景下,可知平方损失函数对每一个输出结果都十分看重,而交叉熵损失函数只对正确分类的结果看重。例如,对于一个多分类模型其模型结果输出为(a,b,c),而实际真实结果为(1,0,0)。则根据两种损失函数的定义其损失函数可以描述为:

                                 Ls=(a-1)^{2}+(b-0)^{2}+(c-0)^{2}=(a-1)^{2}+b^{2}+c^{2}

                                             Lc=-1*loga-0*logb-0*logc=-loga

        从上述的结果中可以看出,交叉熵损失函数只和分类正确的预测结果有关。而平方损失函数还和错误的分类有关,该损失函数除了让正确分类尽量变大,还会让错误分类都变得更加平均,但实际中后面的这个调整使没必要的。但是对于回归问题这样的考虑就显得重要了,因而回归问题上使用交叉熵并不适合。
习题 2-12 对于一个三分类问题 , 数据集的真实标签和模型的预测标签如下 :

 分别计算模型的精确率、召回率、F1值以及它们的宏平均和微平均.  

格式要求:使用公式编辑器,在博客上正确书写公式。

答:

1的精确率:P1=\frac{TP1}{TP1+FP}=\frac{1}{1+1+0}=\frac{1}{2}

2的精确率:  P2=\frac{TP2}{TP2+FP}=\frac{2}{0+2+1}=\frac{1}{3}

 3的精确率: P3=\frac{TP3}{TP3+FP}=\frac{2}{1+1+2}=\frac{1}{2}

1的召回率:R1=\frac{TP1}{TP1+FN}=\frac{1}{1+1+0}=\frac{1}{2}

2的召回率:R2=\frac{TP2}{TP2+FN}=\frac{2}{0+2+1}=\frac{2}{3}

3的召回率:R3=\frac{TP3}{TP3+FN}=\frac{2}{1+1+2}=\frac{1}{2}

1的F1值:F11=\frac{2}{\frac{1}{P1}+\frac{1}{R1}}=\frac{2}{\frac{1}{\frac{1}{2}}+\frac{1}{\frac{1}{2}}}=\frac{1}{2}

2的F1值:F12=\frac{2}{\frac{1}{P2}+\frac{1}{R2}}=\frac{2}{\frac{1}{\frac{1}{3}}+\frac{1}{\frac{2}{3}}}=\frac{4}{9}

3的F1值:F13=\frac{2}{\frac{1}{P3}+\frac{1}{R3}}=\frac{2}{\frac{1}{\frac{1}{2}}+\frac{1}{\frac{1}{2}}}=\frac{1}{2}

宏平均:

P=\frac{P1+P2+P3}{3}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{2}}{3}=\frac{4}{9}

 R=\frac{R1+R2+R3}{3}=\frac{\frac{1}{2}+\frac{2}{3}+\frac{1}{2}}{3}=\frac{5}{9}

 F1=\frac{F11+F12+F13}{3}=\frac{\frac{1}{2}+\frac{4}{9}+\frac{1}{2}}{3}=\frac{13}{27}

微平均:

P=\frac{TP1+TP2+TP3}{TP1+TP2+TP3+FP1+FP2+FP3}=\frac{1+2+2}{1+2+2+1+1+2}=\frac{5}{9}

 

R=\frac{TP1+TP2+TP3}{TP1+TP2+TP3+FN2+FN2+FN3}=\frac{1+2+2}{1+2+2+1+1+2}=\frac{5}{9}

F1=\frac{2*P*R}{P+R}=\frac{2*\frac{5}{9}*\frac{5}{9}}{\frac{5}{9}+\frac{5}{9}}=\frac{5}{9}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI-2 刘子豪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值