习题 2-1 分析为什么平方损失函数不适用于分类问题 , 交叉熵损失函数不适用于回归问题.
答:从平方损失函数运用到多分类场景下,可知平方损失函数对每一个输出结果都十分看重,而交叉熵损失函数只对正确分类的结果看重。例如,对于一个多分类模型其模型结果输出为(a,b,c),而实际真实结果为(1,0,0)。则根据两种损失函数的定义其损失函数可以描述为:
从上述的结果中可以看出,交叉熵损失函数只和分类正确的预测结果有关。而平方损失函数还和错误的分类有关,该损失函数除了让正确分类尽量变大,还会让错误分类都变得更加平均,但实际中后面的这个调整使没必要的。但是对于回归问题这样的考虑就显得重要了,因而回归问题上使用交叉熵并不适合。
习题 2-12 对于一个三分类问题 , 数据集的真实标签和模型的预测标签如下 :
分别计算模型的精确率、召回率、F1值以及它们的宏平均和微平均.
格式要求:使用公式编辑器,在博客上正确书写公式。
答:
1的精确率:
2的精确率:
3的精确率:
1的召回率:
2的召回率:
3的召回率:
1的F1值:
2的F1值:
3的F1值:
宏平均:
微平均: