顶刊《系统工程理论与实践》文本分析技术最新进展总结盘点

文章探讨了深度学习模型在投资者互动平台信息交互、股价泡沫、分析师报告相似度、媒体情绪对风险影响、企业决策等多个领域的应用,揭示了文本特征在理解金融市场动态中的关键作用,以及信息透明度、投资者行为和外部环境等因素的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《系统工程理论与实践》文本分析主要用于分析师报告相似度、媒体情绪、创新测度、企业数字创新指数、自然语言处理、主题分析、经济学政策不确定性、情感分析。

尹海员,杨庆松.投资者互动平台信息交互对上市公司股价泡沫的影响—基于文本深度学习的证据[J/OL].系统工程理论与实践:1-23[2024-04-21].http://kns.cnki.net/kcms/detail/11.2267.N.20240408.1957.006.html.

【摘要】本文搭建了并行CNN-LSTM深度学习模型,挖掘了沪深两市互动平台上投资者与上市公司管理层的互动文本,从文本内容和语义特征出发量化投资者与管理层的信息交互过程,通过识别投资者问询内容和公司回复质量,分析了其对公司股价泡沫的影响效应。研究发现,投资者对不同内容的提问关注对股价泡沫的影响效应有显著差异,其中对公司股票和财务类信息的提问关注可以抑制股价泡沫频率和强度,而对公司研发生产和销售类信息的提问关注则提升了股价泡沫频率和强度;管理层针对投资者提问的回复明确性越高,越可以显著降低股价泡沫频率,但对股价泡沫强度没有呈现显著影响。进一步看,外部信息环境越差、机构投资者持股比例越低,互动平台信息交互对公司股价泡沫的影响效应越明显,公司信息透明度在这一影响效应中起到了部分中介效应。研究结论有助于从微观视角理解我国投资者互动平台中的信息交互行为对股市运行的影响机理。

【关键词】投资者互动平台;信息交互;股价泡沫;深度学习;

任飞,王鹏程,李呈昊,等.分析师报告相似度对股价联动的影响研究[J/OL].系统工程理论与实践:1-29[2024-04-21].http://kns.cnki.net/kcms/detail/11.2267.N.20240319.1621.002.html.

【摘要】股价联动是金融市场风险传染的主要表现,研究股价联动的影响因素对于防范和化解金融风险具有重要意义。鲜有文献关注分析师报告包含的相似信息与股价联动的关系,但证券分析师在股票市场上扮演着重要的信息中介角色,其生产的相似信息将通过引起投资者的同向交易对股价联动造成影响。文章利用2015年1月-2023年5月A股上市公司的分析师报告,引入TF-IDF文本分析方法测算共同分析师报告和个体分析师报告的文本相似度,探讨分析师报告中相似信息对股价联动的影响。研究发现:(1)分析师报告中的相似信息能够显著促进股价联动。(2)个体和机构投资者交易行为在文本相似度对股价联动的影响中起到了中介作用。(3)共同分析师生产更多的相似信息,会加剧股价联动异象,进一步研究表明,若股票对属于同一行业这一结论则更加显著。研究成果有助于深入理解分析师生产的信息对股价联动的影响机制,为投资者理性投资及监管者加强市场管理提供理论依据。

【关键词】分析师报告;文本相似度;股价联动;共同覆盖信息;机器学习;

宫晓莉,徐小惠,熊熊.媒体情绪与企业风险承担——基于机器学习和文本分析的证据[J/OL].系统工程理论与实践:1-28[2024-04-21].http://kns.cnki.net/kcms/detail/11.2267.n.20240304.1900.015.html.

【摘要】媒体舆论作为企业运营过程中与外界信息交互的重要渠道,能够通过信息加工和反馈潜移默化地影响企业决策。基于优化机器学习方法测量得到的媒体情绪得分,本文发现媒体情绪会抑制企业风险承担,这一结论经过充分稳健性检验后仍然成立。机制分析表明,媒体情绪主要通过影响信息不对称程度、感染投资者情绪和加剧分析师羊群行为实现对企业风险承担的抑制效应。异质性分析表明相比于负面媒体情绪,正面媒体情绪在这一过程中起主导作用。除此之外,这一抑制效应在行业竞争程度更激烈、外部监督程度更严格时更显著,且在融资约束更高、金融化程度更高、高管在职消费现象更严重时更加明显。本文的研究不仅有助于厘清媒体情绪对企业风险承担的影响方式和途径,对于如何利用媒体力量助力企业风险决策和价值提升,促进实体经济高质量发展也有一定的政策启示。

【关键词】媒体情绪;机器学习;企业风险承担;信息不对称;投资者情绪;

何世繁,潘晓宏,王应明.基于异质在线评论信息的多准则决策方法研究[J/OL].系统工程理论与实践:1-18[2024-04-21].http://kns.cnki.net/kcms/detail/11.2267.n.20240124.1049.002.html.

【摘要】随着信息技术的发展,互联网中积累了大量有价值的信息,这些信息已成为多准则决策重要的信息来源.由于个人知识背景、经验、表达习惯以及不同准则特质的不同,在线评论信息通常由多种形式的信息组成,如实数、区间数和文本信息.这种异质信息会给决策过程中的信息处理、融合和方案选择带来新的挑战.为了应对这些挑战,本文提出了一种基于异质在线评论信息的多准则决策方法.首先,通过数据获取与预处理方法,获得与决策问题相关的异质在线评论信息.其次,提出了一种异质信息处理方法,将不同形式的信息统一处理为分布在同一识别框架上的语言分布信息.然后,为了应对在线评论信息中的模糊和不确定性,提出了一种区间权重确定模型和一种基于证据推理算法的信息融合方法.最后,通过一个关于汽车评估的案例分析验证了将所提出的多准则决策方法的实用性和有效性.

【关键词】异质在线评论信息;多准则决策;异质信息处理;区间权重确定;信息融合;

郭冬梅,王继彬,胡瀚清,等.基于文本的创新测度及对企业绩效的影响研究[J/OL].系统工程理论与实践:1-34[2024-04-21].http://kns.cnki.net/kcms/detail/11.2267.N.20240105.1527.025.html.

【摘要】本文基于中国 A股上市企业的研报文本数据,使用 LDA 主题模型、情感分析等方法构建了文本创新指标, 并通过考察其与企业绩效的相关性, 验证该指标的合理性. 研究发现: 第一, 文本创新指标具有全面性, 不仅与研发投入、专利等传统创新指标具有高度的相关性, 还能在一定程度上测度企业的非技术创新; 第二, 文本创新指标具有稳健性, 相较于传统创新指标, 文本创新指标与企业经营绩效的正相关性更稳健; 第三, 文本创新指标具有精准性, 能部分减缓传统创新指标因测量误差、研发操纵等导致的估计偏误. 本研究有益于拓展创新度量指标并据此准确估计创新对于企业经营绩效的作用效果, 同时还为政府制定相关创新政策提供度量依据.

【关键词】文本创新;研发投入;专利;非技术创新;企业绩效;

郑攀攀,庄子银.知识产权司法保护专门化与企业数字创新[J/OL].系统工程理论与实践:1-32[2024-04-21].http://kns.cnki.net/kcms/detail/11.2267.N.20240105.1410.011.html.

【摘要】文章以2008—2020年A股上市公司为研究对象, 创新性地构建企业数字创新指数, 实证检验了知识产权法院设立带来的“知识产权司法保护专门化效应”对企业数字创新的影响. 研究发现: (1) 知识产权法院设立对企业数字创新具有显著促进效应; (2) 知识产权法院设立主要促进企业数字商业模式创新; (3) 知识产权法院设立会通过优化数字创新司法环境、降低数字创新溢出损失及缓解企业外部融资约束等机制促进企业数字创新; (4) 知识产权法院设立对小规模、非国有及低竞争行业企业数字创新的促进作用更为显著; (5) 知识产权法院设立显著提升了数字创新(尤其是数字商业模式创新) 企业的市场价值.

【关键词】知识产权;司法专门化;数字创新;文本识别

凌爱凡,彭伟,王千千,等.金融研究中自然语言处理技术的应用进展[J].系统工程理论与实践,2024,44(01):387-421.

【摘要】利用自然语言处理(NLP)技术从公司年报、新闻报道以及自媒体等语料库的非结构化数据中获取关键信息来研究经济金融问题,近年来吸引了大量学者的广泛关注,产生了丰富的研究文献.本文提供了一份NLP在金融问题中应用的最新研究进展,介绍了NLP技术的文本分析方法,重点关注了如何利用公司年报文本和新闻文本来研究公司金融、资产定价、风险管理、宏观金融和绿色金融等领域问题的相关文献.论文最后对当前文献研究的不足进行了评价,并提出了若干可进一步研究的方向.

【关键词】自然语言处理;语料库;文本数据;金融研究;

黄晓迪,曾燕,戴芸,等.中国上市公司解禁与业绩说明会语调操纵[J].系统工程理论与实践,2023,43(03):684-705.

【摘要】管理层在上市公司业绩说明会中的语调因具有实时性和互动性,难以事先完全准备,因此被证明具有预测未来业绩的信息增量,从而会引起显著的市场反应.本文选取上市公司限售股解禁事件,研究业绩说明会中是否会因限售股股东的重大得利驱动产生管理层语调操纵现象,并创新性地探究了业绩说明会管理层语调操纵的时机、诱因、目的和效果:1)时机:在控制了公司业绩表现的基础上,解禁前最近一次举办的业绩说明会相比于其它时期的业绩说明会,管理层语调显著更加积极; 2)诱因:解禁前业绩说明会的异常语调与限售股股东减持动机显著正相关; 3)目的:解禁前业绩说明会的异常语调与公司未来业绩无关,说明异常语调无信息增量,管理层企图通过过分积极的语调来误导市场; 4)效果:市场对解禁前业绩说明会的异常语调反应平平.上述结果表明,当涉及重大相关利益时,例如限售股解禁事件发生时,即便是实时互动性强的业绩说明会,也会出现管理层语调操纵现象.然而,由于投资者的理性预期,解禁前的管理层语调操纵并不能达到误导市场的目的,这也说明了中国金融市场具有一定的有效性.

【关键词】业绩说明会;管理层语调操纵;解禁减持;业绩预测;市场反应

洪巍,王晨雪,吴林海,等.基于保护动机理论的食品安全网络谣言关注度影响因素研究[J].系统工程理论与实践,2022,42(11):3121-3138.

【摘要】近年来我国重大食品安全事件发生频率较低,食品安全风险已由重大食品安全事件所引发的食品安全问题转变为由食品安全问题所衍生的食品安全网络谣言对公众认知的误导以及引发食品安全恐慌等.本文以微信食品安全网络谣言作为研究对象,从保护动机理论出发,结合社会支持理论、信息采纳理论构建影响食品安全网络谣言文本关注度的风险感知评价指标,然后对文本内容进行编码,建立风险感知量表,探究文本内容与阅读量和评论量的关系.通过Ordinal回归分析得到以下结论:现实关联性、后果严重性、表达方式会正向影响食品安全网络谣言的阅读量和评论量,情感动员会正向影响谣言的阅读量,对谣言的评论量的影响不显著,针对指向性对谣言的阅读量和评论量的影响都不显著.

【关键词】保护动机理论;食品安全;网络谣言;关注度;

张文,王强,杜宇航,等.在线商品评论有用性主题分析及预测研究[J].系统工程理论与实践,2022,42(10):2757-2768.

【摘要】随着电子商务的飞速发展,电商平台上的在线商品评论成为消费者在线购物时做出购买决策的重要参考,同时也是平台商家获取在线消费者真实关切的重要信息来源.然而,海量的良莠不齐的在线商品评论使得消费者和商家很难从中获取有价值的高质量信息.一方面,本文在经典的主题分析LDA模型的基础之上提出了一种基于评论有用性的主题分析模型,即Help-LDA模型.相比与假定每条评论具有同等重要程度的LDA模型,Help-LDA模型根据评论有用性对不用评论赋予不同的权重,进而从有用性较高的评论中抽取出对于消费者更有用的决策信息.另一方面,本文基于Help-LDA模型提出了新的评论文本表示方法,并结合SVM方法进行评论有用性预测.通过收集大众点评网站在线评论进行的实验表明,Help-LDA模型能够从电商评论中高质量抽取在线消费者对于商家商品和服务的真实关切.并且基于Help-LDA模型的评论文本表示结合SVM方法能够显著提升在线评论有用性预测性能.

【关键词】在线商品评论;主题分析;评论有用性;评论主题提取;有用性预测

徐鹏,尚维.基于趋势情感映射的物价舆情词典及舆情指数构建研究[J].系统工程理论与实践,2022,42(12):3381-3400.

【摘要】互联网新闻中反映的市场观点和情感可为经济监测预警提供及时有效的参考.为更好地识别和量化文本中对于经济变动趋势的观点和情感,本文提出了一种基于趋势情感映射的舆情词典构建方法.该方法识别描述经济趋势的核心词汇形成趋势种子词集,并集成情感词相关性计算结果,利用重新设计的标签传播算法得到映射系数,获得情感词的观点值,形成能够量化新闻的物价舆情词典.本文还提出了一种考虑句法结构的物价舆情指数模型,通过主题匹配、程度量化、否定识别等过程实现对特定领域经济新闻中的观点和情绪的更为精确的度量.实证分析中构建了物价舆情词典并生成物价和食品及其分项物价等11个主题的舆情指数,通过分类检验及与CPI的对比分析,发现基于本文方法所建立的舆情指数在长期趋势上领先于CPI约1.25个月.本文所提出的舆情词典构建方法和舆情指数模型具有可扩展性,有望应用于其他宏观经济或行业市场景气分析研究,是现有基于经济文本的预测预警建模方法的重要改进.

【关键词】经济舆情词典;情感分析;舆情指数;互联网新闻;物价;

张一帆,林建浩,杨扬,等.央行沟通、信息冲击与国债市场波动[J].系统工程理论与实践,2022,42(03):575-590.

【摘要】在利率市场化改革背景下,国债市场是货币政策利率传导机制的重要环节,国债收益率及其波动可能受到央行沟通的影响.相比书面沟通,口头沟通频率更高、时效性更强,为此本文利用中国人民银行2003年至2018年口头沟通实践,通过前沿的文本分析方法提取每次沟通事件的语调与复杂度,并构造相邻两次沟通的文本相似度,基于EGARCH模型全面考察国债市场对央行沟通的反应.本文的实证研究发现,从均值方程看,沟通语调对国债收益率的引导作用在金融危机后明显增强、在长期国债收益率中更为显著,表明中国央行沟通的信息渠道正逐步完善且符合利率体系特征;从方差方程看,明显的沟通语调变动以及稳定和易于理解的措辞习惯能有效降低市场波动,表明中国央行沟通的协同渠道较为顺畅,货币当局能够通过预期管理维持市场稳定.

【关键词】央行沟通;信息冲击;市场波动;

李斌,王颖慧,朱晓谦,等.保险业重要风险点的识别和演化分析——基于财务报告中披露的文本风险信息[J].系统工程理论与实践,2022,42(02):333-344.

【摘要】识别保险业当前和未来面临的突出风险并进行有效防控和监管对于维持保险业以及整个金融业的稳定具有重要意义.现有研究大多基于定量指标估算各类风险的水平,存在一定的间接性和滞后性.监管机构通常要求公司在财务报告中以文本的形式披露当前或未来面临的潜在风险,充分提取这些风险信息可以集合所有保险公司管理人员的经验和判断,更加直接、前瞻性地发现保险业面临的突出风险.因此,提出通过引入文本挖掘方法,从大量财务报告中识别保险业面临的重要风险点及其演化规律.实证基于214家美国上市保险公司2006-2018年的1682个财务报告,识别出29个保险业的重要风险点并分析重要度的演化趋势,发现与操作风险相关的风险点的重要度呈显著上升趋势,尤其是“信息系统安全”上升幅度最大,建议保险公司和监管机构目前应高度重视新技术、新业务模式带来的操作风险.

【关键词】保险业;风险披露;风险演化;文本挖掘;财务报告;

任飞,罗靖怡,陈张杭健,等.分析师深度研究报告向市场传递的信息含量——基于“新”、“旧”信息的文本分解[J].系统工程理论与实践,2020,40(12):3034-3058.

【摘要】本文首次从信息有效性角度,采用文本向量化方法将分析师深度研究报告文本分解为"新"、"旧"信息,并以事件窗口下的累计收益率度量股价反应,检验上述两类信息对股价的影响.研究结果表明,分析师独立收集并发布的"新"信息能够引起显著的股价反应.分析师群体存在复述市场已有信息的行为,但其复述的"旧"信息对股价无显著影响.通过进一步分解股价反应,发现分析师"新"信息同时向市场传递了公司特质信息与市场行业信息.此外,分析师报告的语调、谨慎性和简洁性等文本特征能影响"新"信息进入股价.本文为监管当局如何规范分析师行为以及分析师如何撰写研究报告提供了新的视角与实践方法.

【关键词】分析师报告;信息含量;文本分析;公司特质信息;市场行业信息;

吴武清,甄伟浩,杨洁,等.企业风险信息披露与债券风险溢价——基于债券募集说明书的文本分析[J].系统工程理论与实践,2021,41(07):1650-1671.

【摘要】目前鲜有关于债券市场中企业风险信息披露的研究文献.本文以2006-2017年间在上交所和深交所发布的债券募集说明书为样本,通过对企业风险信息进行文本分析,研究了公司风险信息披露行为对债券风险溢价的影响及其作用机制.实证结果表明,债券募集说明书的风险披露程度与债券风险溢价之间存在显著的正相关关系.进一步研究发现,债券的担保条款、产权性质、发债企业绩效以及投资者的风险敏感性,对风险披露程度与债券风险溢价的正相关关系具有调节作用.这证实了债券募集说明书的风险披露程度上升会提高投资者的违约风险感知,从而导致债券风险溢价上升的影响机制.

【关键词】风险信息披露;债券风险溢价;文本分析;

李兵,林安琪,郭冬梅.经济政策不确定性对进口产品的异质性影响——基于中文报纸大数据文本的实证分析[J].系统工程理论与实践,2020,40(06):1578-1595.

【摘要】本文使用Baker等(2016)构建的中国经济政策不确定性指数(EPU),和基于中文报纸文本关键词搜索构造的中国经济政策不确定性指数(CEPU),运用中国2010年1月-2016年4月约5000种产品的进口月度数据,分别估计了EPU和CEPU对这些产品进口的影响,发现经济政策不确定性对于不同产品的进口影响是不同的,既有负向影响的,也有正向影响的.进一步,我们采用BEC大类分类、差异化产品和同质产品、全球贸易国家数与集中度、进口需求弹性来刻画产品的异质性,对经济不确定性对不同产品影响的差异进行了解释.我们发现当中国的经济政策不确定性增大时,资本品和运输设备相比中间投入品、差异化产品相比同质产品,进口受到的负面影响更大;需求替代弹性越小、全球进口国家数越多、全球进口国家集中度越低、全球出口国家集中度越高的产品,其产品进口的负面反应越大.此外,我们对比EPU与CEPU这两个指数在回归中的表现,CEPU指数比EPU指数的结果更为合理.

【关键词】经济政策不确定性;进口;产品异质性;文本分析;

国显达,那日萨,崔少泽.基于CNN-BiLSTM的消费者网络评论情感分析[J].系统工程理论与实践,2020,40(03):653-663.

【摘要】现如今,商品在线评论的情感分析业已成为许多商家不可忽视的重要工作,它对于商家了解用户偏好有着重要意义,同时,它还能够为相关产品下一步的改进工作提供方向指导.然而,传统的分析方法已无法解决现在情感分析中特征提取及语义理解等方面存在的问题.针对此类问题,本文提出一种基于CNN-BiLSTM的在线评论情感分析方法,不仅可以像LSTM一样建立时序关系,而且可以像CNN一样刻画局部空间特征.医疗服务、物流快递、金融服务、旅游住宿和食品餐饮数据集的实验结果表明,该方法能有效判别消费者在线评论情感倾向,在文本的情感分类中效果较传统机器学习算法更准确,F1值可以达到94.67%.同时,实验证明该方法具有较好的领域可拓展性.

【关键词】情感分析;在线评论;深度学习;CNN模型;BiLSTM模型;

石善冲,朱颖楠,赵志刚,等.基于微信文本挖掘的投资者情绪与股票市场表现[J].系统工程理论与实践,2018,38(06):1404-1412.

【摘要】本文以基于微信文本挖掘的投资者情绪与上证指数收盘价、成交量为研究对象,研究了投资者情绪时间序列与收盘价、成交量时间序列之间的关系.研究结果验证了投资者三种情绪倾向对股票市场的影响方式和效果不同:基于微信文本挖掘的投资者消极情绪比例能够稳定预测上证指数收盘价,基于微信文本挖掘的投资者积极情绪倾向和中性情绪倾向比例的增减变动能够迅速引发滞后1天的上证指数成交量的增减变动.研究表明基于微信文本挖掘的投资者情绪对于预测股票市场表现有重要作用.

【关键词】微信文本挖掘;投资者情绪;股票市场表现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值