详细介绍pytorch重要的API


1. Tensor(张量)

Tensor 是 PyTorch 中最基本的数据结构,提供了多种创建和操作张量的函数。

创建 Tensor
import torch

# 创建一个 Tensor
x = torch.tensor([1.0, 2.0, 3.0])

# 从 NumPy 数组创建 Tensor
import numpy as np
np_array = np.array([1.0, 2.0, 3.0])
x = torch.from_numpy(np_array)

# 创建全零或全一 Tensor
x = torch.zeros(3, 4)
x = torch.ones(3, 4)

# 创建随机 Tensor
x = torch.randn(3, 4)
操作 Tensor
# 基本操作
x = torch.tensor([1.0, 2.0, 3.0])
y = x + 2
z = x * y

# 索引和切片
x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x[0, 1])  # 输出 2
print(x[:, 1])  # 输出 tensor([2, 5])

2. Autograd(自动求导)

Autograd 提供了自动求导功能&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

司南锤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值