文章目录
1. Tensor(张量)
Tensor 是 PyTorch 中最基本的数据结构,提供了多种创建和操作张量的函数。
创建 Tensor
import torch
# 创建一个 Tensor
x = torch.tensor([1.0, 2.0, 3.0])
# 从 NumPy 数组创建 Tensor
import numpy as np
np_array = np.array([1.0, 2.0, 3.0])
x = torch.from_numpy(np_array)
# 创建全零或全一 Tensor
x = torch.zeros(3, 4)
x = torch.ones(3, 4)
# 创建随机 Tensor
x = torch.randn(3, 4)
操作 Tensor
# 基本操作
x = torch.tensor([1.0, 2.0, 3.0])
y = x + 2
z = x * y
# 索引和切片
x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x[0, 1]) # 输出 2
print(x[:, 1]) # 输出 tensor([2, 5])
2. Autograd(自动求导)
Autograd 提供了自动求导功能&