EPSANet: An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network论文参考文献

在这里插入图片描述


[1] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han Hu. Gcnet: Non-local networks meet squeeze-excitation networks and beyond. arXiv preprint arXiv:1904.11492, 2019.
中文翻译:[1] 曹悦、徐家瑞、林斯蒂芬、魏芳云、胡翰。Gcnet:非局部网络与Squeeze-Excitation网络的融合及拓展。arXiv预印本arXiv:1904.11492,2019。
[2] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. In European Conference on Computer Vision (ECCV), 2018.
中文翻译:[2] 李昂-杰·陈、朱玉昆、乔治·帕帕纳德勒欧、弗洛里安·施罗夫、哈特威格·亚当。用于语义图像分割的编码器-解码器与扩张可分离卷积。在欧洲计算机视觉会议(ECCV)上,2018。
[3] Songtao Liu, Di Huang, and Yunhong Wang. Learning spatial fusion for single-shot object detection. 2019.
中文翻译:[3] 刘松涛、黄迪、王云峰。学习用于单次目标检测的空间融合。2019。
[4] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang. Residual attention network for image classification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3156–3164, 2017.
中文翻译:[4] 王飞、蒋孟庆、钱晨、杨朔、李成、张洪刚、王晓刚、汤晓鸥。用于图像分类的残差注意力网络。在IEEE计算机视觉与模式识别会议(CVPR)上,第3156-3164页,2017。
[5] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block attention module. In European Conference on Computer Vision (ECCV), 2018.
中文翻译:[5] 伍桑铉、朴钟灿、李俊荣、权仁洙。CBAM:卷积块注意力模块。在欧洲计算机视觉会议(ECCV)上,2018。
[6] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing network. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
中文翻译:[6] 赵恒爽、史建平、齐晓娟、王晓刚、贾亚雅。金字塔场景解析网络。在IEEE计算机视觉与模式识别会议(CVPR)上,2017。
[7] Zilong Zhong, Zhong Qiu Lin, Rene Bidart, Xiaodan Hu, Ibrahim Ben Daya, Zhifeng Li, WeiShi Zheng, Jonathan Li, and Alexander Wong. Squeeze-and-attention networks for semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2020.
中文翻译:[7] 钟子龙、林仲秋、雷内·比达尔、胡晓丹、易卜拉欣·本·戴亚、李志峰、郑伟士、李乔纳森、亚历山大·王。用于语义分割的挤压与注意力网络。在IEEE计算机视觉与模式识别会议(CVPR)上,2020。
[8] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng Yan, and Jiashi Feng. A2-nets: Double attention networks. In Advances in Neural Information Processing Systems (NIPS), 2018.
中文翻译:[8] 陈云鹏、亚尼斯·卡兰蒂迪斯、李建树、颜水成、冯佳士。A2-Nets:双重注意力网络。在神经信息处理系统进展(NIPS)上,2018。
[9] Zequn Qin, Pengyi Zhang, Fei Wu, and Xi Li. Fcanet: Frequency channel attention networks. arXiv preprint arXiv:2012.11879, 2020.
中文翻译:[9] 秦泽群、张鹏翼、吴飞、李西。FCANet:频率通道注意力网络。arXiv预印本arXiv:2012.11879,2020。
[10] Haiwei Sang, Qiuhao Zhou, and Yong Zhao. Pcanet: Pyramid convolutional attention network for semantic segmentation. Image and Vision Computing, page 103997, 2020.
中文翻译:[10] 尚海伟、周秋浩、赵勇。PCANet:用于语义分割的金字塔卷积注意力网络。图像与视觉计算,第103997页,2020。
[11] Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and Qinghua Hu. Eca-net: Efficient channel attention for deep convolutional neural networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
中文翻译:[11] 王启龙、吴邦国、朱鹏飞、李佩华、左旺孟、胡庆华。ECANet:用于深度卷积神经网络的高效通道注意力。在IEEE计算机视觉与模式识别会议(CVPR)上,2020。
[12] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li, and Alexander Smola. Resnest: Split-attention networks. arXiv preprint arXiv:2004.08955, 2020.
中文翻译:[12] 张航、吴崇若、张仲乐、朱毅、张智、林海斌、孙跃、何通、乔纳斯·穆勒、R. 曼马萨、穆·李、亚历山大·斯莫拉。ResNeSt:分裂注意力网络。arXiv预印本arXiv:2004.08955,2020。
[13] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
中文翻译:[13] 胡杰、沈立、孙刚。挤压与激励网络。在IEEE计算机视觉与模式识别会议(CVPR)上,2018。
[14] J. Park, S. Woo, J.-Y. Lee, and I. S. Kweon. Bam: Bottleneck attention module. In British Machine Vision Conference(BMVC), 2018.
中文翻译:[14] J.帕克、S.伍、J.-Y.李、I.S.权。BAM:瓶颈注意力模块。在英国机器视觉会议(BMVC)上,2018。
[15] Ionut Cosmin Duta, Li Liu, Fan Zhu, and Ling Shao. Pyramidal convolution:rethinking convolutional neural networks for visual recognition. arXiv preprint arXiv:2006.11538, 2020.
中文翻译:[15] 离欧内特·科斯敏·杜塔、刘莉、朱凡、邵令。金字塔卷积:重新思考用于视觉识别的卷积神经网络。arXiv预印本arXiv:2006.11538,2020。
[16] Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-Hsuan Yang, and Philip Torr. Res2net: A new multi-scale backbone architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(2):652–662, 2021.
中文翻译:[16] 高尚华、程明明、赵凯、张新宇、杨明轩、菲利普·托尔。Res2Net:一种新的多尺度骨干架构。IEEE模式分析与机器智能汇刊,43(2):652-662,2021。

[17] Pengcheng Yuan, Shufei Lin, Cheng Cui, Yuning Du, Ruoyu Guo, Dongliang He, Errui Ding, and Shumin Han. Hs-resnet: Hierarchical-split block on convolutional neural network. arXiv preprint arXiv:2010.07621, 2020.
中文翻译:[17] 袁鹏程、林树飞、崔成、杜云宁、郭若愚、何栋良、丁二锐、韩淑敏。HS-ResNet:卷积神经网络上的层次分裂块。arXiv预印本arXiv:2010.07621,2020。
[18] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang, and Hanqing Lu. Dual attention network for scene segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
中文翻译:[18] 傅军、刘静、田海杰、李勇、鲍永军、方志伟、卢汉清。用于场景分割的双重注意力网络。在IEEE计算机视觉与模式识别会议(CVPR)上,2019。
[19] Xiaolong Wang, Girshick Ross, Gupta Abhinav, and Kaiming He. Non-local neural networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
中文翻译:[19] 王小龙、罗斯·吉什克、阿宾纳夫·古普塔、何恺明。非局部神经网络。在IEEE计算机视觉与模式识别会议(CVPR)上,2018。
[20] Zilin Gao, Jiangtao Xie, Qilong Wang, and Peihua Li. Global second-order pooling convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
中文翻译:[20] 高子林、谢江涛、王启龙、李佩华。全局二阶池化卷积网络。在IEEE计算机视觉与模式识别会议(CVPR)上,2019。
[21] Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective kernel networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 510–519, 2019.
中文翻译:[21] 李翔、王文海、胡晓林、杨健。选择性核网络。在IEEE计算机视觉与模式识别会议(CVPR)上,第510-519页,2019。
[22] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In IEEE International Conference on Computer Vision (ICCV), pages 2961–2969, 2017.
中文翻译:[22] 何恺明、乔治亚·吉奥克萨里、皮奥特·多拉尔、罗斯·吉什克。Mask R-CNN。在IEEE国际计算机视觉会议(ICCV)上,第2961-2969页,2017。
[23] M. Najibi, P. Samangouei, R. Chellappa, and L. S. Davis. Ssh: Single stage headless face detector. In Proceedings of the IEEE International Conference on Computer Vision, pages 4875–4884, 2017.
中文翻译:[23] M.纳吉比、P.萨曼戈伊、R.切尔帕帕、L.S.戴维斯。SSH:单阶段无头面部检测器。在IEEE国际计算机视觉会议论文集上,第4875-4884页,2017。
[24] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems (NIPS), pages 91–99, 2015.
中文翻译:[24] 任少卿、何恺明、罗斯·吉什克、孙剑。Faster R-CNN:用区域提议网络实现实时目标检测。在神经信息处理系统进展(NIPS)上,第91-99页,2015。
[25] Jia-Xing Zhao, Yang Cao, Deng-Ping Fan, Ming-Ming Cheng, Xuan-Yi Li, and Le Zhang. Contrast prior and fluid pyramid integration for rgbd salient object detection. In IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2019.
中文翻译:[25] 赵家兴、曹阳、范登平、程明明、李轩逸、张磊。对比先验和流体金字塔融合用于RGBD显著目标检测。在IEEE计算机视觉与模式识别会议(CVPR)上,2019。
[26] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In International Conference on Machine Learning (ICML), 2010.
中文翻译:[26] 维诺德·奈尔、杰弗里·辛顿。修正线性单元改进限制玻尔兹曼机。在国际机器学习会议(ICML)上,2010。
[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.
中文翻译:[27] 何恺明、张翔宇、任少卿、孙剑。用于图像识别的深度残差学习。在IEEE计算机视觉与模式识别会议(CVPR)上,第770-778页,2016。
[28] Hiroshi Fukui, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi. Attention branch network: Learning of attention mechanism for visual explanation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
中文翻译:[28] 福井弘、平川翼、山下孝义、藤吉浩信。注意力分支网络:学习用于视觉解释的注意力机制。在IEEE计算机视觉与模式识别会议(CVPR)上,2019。
[29] Diganta Misra, Trikay Nalamada, Ajay Uppili Arasanipalai, and Qibin Hou. Rotate to attend: Convolutional triplet attention module. In IEEE Winter Conference on Applications of Computer Vision(WACV), 2021.
中文翻译:[29] 迪甘塔·米斯拉、特里凯·纳拉马达、阿杰·乌皮利·阿拉萨尼帕莱、侯启斌。旋转以关注:卷积三元组注意力模块。在IEEE冬季计算机视觉应用会议(WACV)上,2021。
[30] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V Le. Attention augmented convolutional networks. In IEEE International Conference on Computer Vision (ICCV), 2019.
中文翻译:[30] 艾尔文·贝洛、巴雷特·佐夫、阿什什·瓦斯瓦尼、乔纳森·什伦斯、郭伟。注意力增强卷积网络。在IEEE国际计算机视觉会议(ICCV)上,2019。
[31] HyunJae Lee, Hyo-Eun Kim, and Hyeonseob Nam. Srm: A style-based recalibration module for convolutional neural networks. In Proceedings of the IEEE conference on computer vision, page 1854–1862, 2019.
中文翻译:[31] 李贤在、金孝恩、南贤瑞。SRM:用于卷积神经网络的基于风格的重校准模块。在IEEE计算机视觉会议论文集上,第1854-1862页,2019。
[32] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.
中文翻译:[32] 邓嘉、董玮、索彻·理查德、李佳莉、李凯、李飞飞。ImageNet:一个大规模的层次化图像数据库。在IEEE计算机视觉与模式识别会议(CVPR)上,2009。

[33] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826, 2016.
中文翻译:[33] 克里斯蒂安·塞格迪、文森特·范霍克、谢尔盖·伊奥菲、乔纳森·什伦斯、兹比格涅夫·沃伊纳。重新思考用于计算机视觉的Inception架构。在IEEE计算机视觉与模式识别会议论文集上,第2818-2826页,2016。
[34] Tsung-Yi Lin, Piotr Dollár, Ross B Girshick, Kaiming He, Bharath Hariharan, and Serge J Belongie. Feature pyramid networks for object detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, page 4, 2017.
中文翻译:[34] 林宗义、皮奥特·多拉尔、罗斯·吉什克、何恺明、巴拉斯·哈里哈兰、塞尔日·J·贝洛尼。用于目标检测的特征金字塔网络。在IEEE计算机视觉与模式识别会议(CVPR)上,第1卷,第4页,2017。
[35] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2017.
中文翻译:[35] 林宗义、普里亚·戈亚尔、罗斯·吉什克、何恺明、皮奥特·多拉尔。用于密集目标检测的Focal Loss。在IEEE计算机视觉与模式识别会议论文集上,2017。
[36] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European Conference on Computer Vision (ECCV), 2014.
中文翻译:[36] 林宗义、迈克尔·迈尔、塞尔日·贝洛尼、詹姆斯·海斯、皮耶罗·佩罗纳、德瓦·拉马南、皮奥特·多拉尔、C·劳伦斯·齐特尼克。Microsoft COCO:上下文中的常见物体。在欧洲计算机视觉会议(ECCV)上,2014。
[37] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin. Mmdetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155, 2019.
中文翻译:[37] 陈凯、王家琪、庞江苗、曹宇航、熊宇、李潇潇、孙树阳、冯万森、刘子维、徐家瑞、张政、程大志、朱晨晨、程天恒、赵齐杰、李步宇、卢鑫、朱锐、吴悦、戴继峰、王景东、石建平、欧阳万里、 Loy Chen Change、林达华。MMDetection:Open MMLab检测工具箱和基准。arXiv预印本arXiv:1906.07155,2019。
[38] Qing-Long Zhang and Yu-Bin Yang. Sa-net: Shuffle attention for deep convolutional neural networks. In International Conference on Acoustics, Speech and Signal Processing, 2021.
中文翻译:[38] 张庆龙、杨玉斌。SA-Net:用于深度卷积神经网络的洗牌注意力。在国际声学、语音和信号处理会议

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

司南锤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值