情感分类问题IMDB实战(SimpleRNN,LSTM,GRU)

使用经典的 IMDB 影评数据集来完成情感分类任务。 IMDB 影评数据集包含了50000 条用户评价,评价的标签分为消极和积极, 其中 IMDB 评级<5 的用户评价标注为0,即消极; IMDB 评价>=7 的用户评价标注为 1,即积极。 25000 条影评用于训练集,25,000 条用于测试集
 

一、数据集加载以及数据集预处理

# 加载IMDB数据集,数据采用数字编码,一个数字代表一个单词
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)
print(x_train.shape, len(x_train[0]), y_train.shape)  # (25000,) 218 (25000,)
print(x_test.shape, len(x_test[0]), y_test.shape)  # (25000,) 68 (25000,)

# 截断和填充句子,使得等长为max_review_len,此处长句子保留后面部分,短句子在前面填充
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)

# 构建数据集,打散,批量,并丢掉最后一个不够batches的batch
db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batches, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batches, drop_remainder=True)
print('db_train:', db_train)  # db_train: <BatchDataset shapes: ((128, 80), (128,)), types: (tf.int32, tf.int64)>

通过Keras提供的数据集datasets可以从网上加载IMDB数据集,该数据集一共50000条用户评价,一半用于训练,另一半用于测试。x_train 和 x_test 是长度为 25,000 的一维数组,数组的每个元素是不定长 List,保存了数字编码的每个句子,例如训练集的第一个句子共有 218 个单词,测试集的第一个句子共有 68 个单词,每个句子都包含了句子起始标志 ID。

对于长度参差不齐的句子,设置一个阈值,对大于此长度的句子,选择截断部分单词,可以选择截去句首单词,也可以截去句末单词;对于小于此长度的句子,可以选择在句首或句尾填充,句子截断功能可以通过 keras.preprocessing.sequence.pad_sequences()函数实现

截断或填充为相同长度后通过 Dataset 类包裹成数据集对象,并添加常用的数据集处理流程,比如数据集批量化,打散,当最后一批数据集不满足一个batch将其丢弃。

二、网络模型构建
 

 自定义网络模型类MyRNN: Embedding层-->两个RNN层-->分类层网络

class MyRNN(keras.Model):
    def __init__(self, units):
        super(MyRNN, self).__init__()
        # 词向量编码 [b,80] ==> [b,80,100]
        # embedding_len:单词向量的长度,total_words:词汇的数量 max_review_len:输入句子长度
        self.embedding = layers.Embedding(total_words, embedding_len, input_length=max_review_len)
        # 构建2个Cell [b,80,100] => [b,64]
        self.rnn = Sequential([
            layers.SimpleRNN(units, dropout=0.5, return_sequences=True),
            layers.SimpleRNN(units, dropout=0.5)
        ])
        # 构建分类网络,用于将Cell的输出特征进行分类,2分类
        # [b,64]=> [b,1]
        self.outlayer = Sequential([
            layers.Dense(units),
            layers.Dropout(rate=0.5),
            layers.ReLU(),
            layers.Dense(1)
        ])

    # 向前计算
    def call(self, inputs, training=None):
        x = inputs  # [b,80]
        # embedding: [b,80] ==> [b,80, 100]
        x = self.embedding(x)
        # rnn cell compute: [b, 80,100] => [b,64]
        out1 = self.rnn(x)
        # 末层最后一个输出作为分类网络的输入: [b, 64] => [b, 1]
        x = self.outlayer(out1, training)
        # p(y is pos|x)
        prob = tf.sigmoid(x)
        return prob

Embedding层作用:把单词编码为某个词向量,它接受采用数字编码的单词编号,是可训练的

 RNN层:每层都需要上一层在每个时间戳上面的状态输出,因此除了最末层以外,所有的 RNN 层都需要返回每个时间戳上面的状态输出,通过设置 return_sequences=True 来实现,用做下一层的输入,dropout用于优化网络性能:减少层与层之间的连接

分类网络完成 2 分类任务,故输出节点设置为 1。输入序列通过 Embedding 层完成词向量编码循环通过两个 RNN层,提取语义特征取最后一层的最后时间戳的状态向量输出送入分类网络,经过Sigmoid 激活函数后得到输出概率
通过Cell方式:

class MyRNN(keras.Model):
    def __init__(self, units):
        super(MyRNN, self).__init__()
        # [b, 64],构建Cell初始化状态向量,重复使用
        self.state0 = [tf.zeros([batches, units])]
        self.state1 = [tf.zeros([batches, units])]
        # 词向量编码 [b,80] ==> [b,80,100]
        self.embedding = layers.Embedding(total_words, embedding_len, input_length=max_review_len)
        # 构建2个Cell
        self.rnn_cell0 = layers.SimpleRNNCell(units, dropout=0.5)  # dropout 减少连接
        self.rnn_cell1 = layers.SimpleRNNCell(units, dropout=0.5)
        # 构建分类网络,用于将Cell的输出特征进行分类,2分类
        # [b,80,100] => [b,64]=> [b,1]
        self.outlayer = Sequential([
            layers.Dense(units),
            layers.Dropout(rate=0.5),
            layers.ReLU(),
            layers.Dense(1)
        ])

    # 向前计算
    def call(self, inputs, training=None):
        x = inputs  # [b,80]
        # embedding: [b,80] ==> [b,80, 100]
        x = self.embedding(x)
        # rnn cell compute: [b, 80,100] => [b,64]
        state0 = self.state0
        state1 = self.state1
        for word in tf.unstack(x, axis=1):  # word: [b,100] 从时间维度展开
            out0, state0 = self.rnn_cell0(word, state0, training)
            out1, state1 = self.rnn_cell1(out0, state1, training)
        # 末层最后一个输出作为分类网络的输入: [b, 64] => [b, 1]
        x = self.outlayer(out1, training)
        # p(y is pos|x)
        prob = tf.sigmoid(x)
        return prob

需要自己实现向前计算,并且维护各个RNN层的初始状态向量,其他都是一样的 

 

三、网络装配

model = MyRNN(units)
    # 装配优化器,学习率,测量器
    model.compile(optimizer=optimizers.Adam(1e-3),
                  loss=losses.BinaryCrossentropy(),
                  metrics=['accuracy'])

在完成网络模型的搭建后,需要指定网络使用的优化器对象、 损失函数类型, 评价指标等设定,这一步称为装配 为了简便, 这里使用 Keras 的 Compile&Fit 方式训练网络,设置优化器为 Adam 优

四、训练与验证

   # 训练 与 验证  validation_data:验证数据
    model.fit(db_train, epochs=epochs, validation_data=db_test)
    # 测试
    model.evaluate(db_test)

这里使用 Keras 的 Compile&Fit 方式训练网络,设置好优化器,学习率,误差函数测试指标(采用准确率),之间利用fit()喂入数据集和测试集即可训练

结果: 训练了近30个epoch

五、LSTM模型

只需要修改网络模型一处即可:修改网络层类型即可

 # 构建rnn
        self.rnn = Sequential([
            layers.LSTM(units, dropout=0.5, return_sequences=True),
            layers.LSTM(units, dropout=0.5)
        ])

结果:LSTM明显效果比RNN好一点

 

六、GRU模型

只需要修改网络模型一处即可:修改网络层类型即可

  # 构建rnn
        self.rnn = Sequential([
            layers.GRU(units, dropout=0.5, return_sequences=True),
            layers.GRU(units, dropout=0.5)
        ])

 结果:也稍微比SampleRNN好:

 

七、完整程序

# -*- codeing = utf-8 -*-
# @Time : 10:20
# @Author:Paranipd
# @File : imdb_rnn_cell.py
# @Software:PyCharm

import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import Sequential, Model, layers, metrics, optimizers, losses

tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2')

batches = 128  # 批量大小
total_words = 10000  # 词汇表大小N_vocad
max_review_len = 80  # 句子的最大长度s,大于的部分将截断,小于的将填充
embedding_len = 100  # 词向量特征长度

# 加载IMDB数据集,数据采用数字编码,一个数字代表一个单词
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)
print(x_train.shape, len(x_train[0]), y_train.shape)  # (25000,) 218 (25000,)
print(x_test.shape, len(x_test[0]), y_test.shape)  # (25000,) 68 (25000,)


# 截断和填充句子,使得等长为max_review_len,此处长句子保留后面部分,短句子在前面填充
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)

# 构建数据集,打散,批量,并丢掉最后一个不够batches的batch
db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batches, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batches, drop_remainder=True)
print('db_train:', db_train)  # db_train: <BatchDataset shapes: ((128, 80), (128,)), types: (tf.int32, tf.int64)>


class MyRNN(keras.Model):
    def __init__(self, units):
        super(MyRNN, self).__init__()
        # 词向量编码 [b,80] ==> [b,80,100]
        # embedding_len:单词向量的长度,total_words:词汇的数量 max_review_len:输入句子长度
        self.embedding = layers.Embedding(total_words, embedding_len, input_length=max_review_len)
        # 构建2个Cell [b,80,100] => [b,64]
        self.rnn = Sequential([
            layers.SimpleRNN(units, dropout=0.5, return_sequences=True),
            layers.SimpleRNN(units, dropout=0.5)
        ])
        # 构建分类网络,用于将Cell的输出特征进行分类,2分类
        # [b,64]=> [b,1]
        self.outlayer = Sequential([
            layers.Dense(units),
            layers.Dropout(rate=0.5),
            layers.ReLU(),
            layers.Dense(1)
        ])

    # 向前计算
    def call(self, inputs, training=None):
        x = inputs  # [b,80]
        # embedding: [b,80] ==> [b,80, 100]
        x = self.embedding(x)
        # rnn cell compute: [b, 80,100] => [b,64]
        out1 = self.rnn(x)
        # 末层最后一个输出作为分类网络的输入: [b, 64] => [b, 1]
        x = self.outlayer(out1, training)
        # p(y is pos|x)
        prob = tf.sigmoid(x)
        return prob


def main():
    units = 64  # rnn状态向量长度
    epochs = 50
    model = MyRNN(units)
    # 装配优化器,学习率,测量器
    model.compile(optimizer=optimizers.Adam(1e-3),
                  loss=losses.BinaryCrossentropy(),
                  metrics=['accuracy'])

    # 训练 与 验证  validation_data:验证数据
    model.fit(db_train, epochs=epochs, validation_data=db_test)
    # 测试
    model.evaluate(db_test)


if __name__ == '__main__':
    main()

  • 7
    点赞
  • 46
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: Python中的SimpleRNNLSTM是用于处理序列数据的两种经典神经网络模型。SimpleRNN是一种基础的循环神经网络,它可以对时间序列数据进行预测和分类等任务,但是在处理长序列时会存在梯度消失和梯度爆炸的问题,导致模型的性能下降。因此,LSTM被提出来解决这个问题LSTM相比于SimpleRNN具有以下特点: 1. 长短时记忆(LSTM)可以存储信息,SimpleRNN只能处理当前的输入。 2. LSTM有三个门控:输入门、输出门和遗忘门。这三个门控可以精确地控制对信息的存取和遗忘,避免了梯度消失和梯度爆炸的问题。 3. LSTM可以通过堆叠多层实现更高层次的抽象和更复杂的模型,而SimpleRNN则很难达到这样的效果。 总之,SimpleRNNLSTM是两种常见的序列模型,LSTM在处理长序列数据时具有更好的表现,并且可以通过堆叠多层来实现更复杂的任务。Python中有丰富的深度学习框架可供选择,可以轻松地构建和训练自己的模型。 ### 回答2: Python是一种高级编程语言,它具有简洁的语法和易于理解的结构,因此非常流行。Python广泛用于各种应用领域,其中包括人工智能和自然语言处理。 在自然语言处理方面,simplernnlstm是两种对于文本数据处理较为常见的深度学习模型。 简单循环神经网络(Simple RNN)是一种基本的递归神经网络,其中神经元会记住以前的信息,以影响目前的输出。但是,由于数据更新的编码方式,简单RNN面对长序列时,记忆力较弱,很容易出现溢出或梯度消失的问题。 长短记忆网络(Long Short-Term Memory, LSTM)是一种可以用来输入序列并输出其相关值的深层网络,它通过"门控"单元来处理序列输入。LSTM能够处理长期依赖问题,在保留过去重要信息的同时可以过滤掉无用信息,使得输出更加准确。LSTM在自然语言处理中有很广泛的应用,能够应用在机器翻译、语音识别、语音合成、问答系统等多个领域。 总而言之,simplernnlstm是两种在自然语言处理中常见的深度学习模型。虽然简单递归神经网络具有简单的结构和不错的表现,但是长短时记忆网络可以更好的解决长期依赖问题,具有更广泛的应用前景。而Python作为常用的编程语言,这些深度学习模型也得到了Python社区的广泛应用,为人工智能和自然语言处理领域的发展提供了强大的支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Super.Bear

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值