一、DAMOYOLO理论部分
在本报告中,我们提出了一种快速准确的对象检测方法,称为 DAMO-YOLO,它实现了比最先进的 YOLO 系列更高的性能。DAMO-YOLO 是从 YOLO 扩展而来的,具有一些新技术,包括神经架构搜索 (NAS)、高效的重新参数化广义 FPN (RepGFPN)、具有 AlignedOTA 标签分配的轻量级头和蒸馏增强。特别地,我们使用了 MAE-NAS,一种以最大熵原理为指导的方法,在低延迟和高性能的约束下搜索我们的检测骨干,生成具有空间金字塔池化和焦点模块的类 ResNet / CSP 结构。在脖子和头的设计中,我们遵循“大脖子、小头”的规则。我们导入了具有加速女