L1 机器学习基本概念

本文介绍了机器学习的基本概念,包括回归、分类和结构式学习。通过一个以25日销售量预测26日销售量的模型为例,详细解释了模型构建、损失函数定义以及优化过程,特别是梯度下降法在寻找最优权重和偏差中的应用。讨论了单参数和多参数优化,并提到了局部最优与全局最优的问题。
摘要由CSDN通过智能技术生成

        Machine Learing = Looking for function

1:Regression(回归) 函数的输出是一个数值

2:Classification(分类)函数输出是给出的选择之一

3:Structure learning 结构式学习

        函数怎么写出(训练过程) 

step1 给出一个初步的含未知参数的函数 ,称为模型model

        例如:以25日销售量x1预测26日销售量

        建立模型 y=b+w*x_{1}

        其中x1即为特征feature;w为权重weight;b为偏差bias

step2 从训练数据中定义损失函数

        L(b,w)其参数即为权重和偏差,其输出值为对该组参数的评估

        例如:给出销售量的训练集

        1日:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值