论文简介
论文中文翻译:《一种基于生物特征的鱼类分类模型》
论文名称:《A biometric-based model for fish species classification》
录用日期:2018年3月3日
期刊情况
期刊:Fisheries Research
期刊情况
- 中科院二区
- 影响因子2.147
- Q1分区
- 一般,6-16周

摘要
- 鱼类识别对濒危鱼类的生存至关重要。本文提出了一种基于生物特征识别的鱼类物种识别方法。所提议的方法包括三个阶段。在第一阶段,从鱼类图像中提取不同的特征。该阶段分别采用韦伯局部描述子(WLD)和颜色矩提取纹理特征和颜色特征。由于WLD特征的高维性,在第二阶段,采用线性判别分析(LDA)来减少特征数量,区分不同的类别。第三阶段,采用AdaBoost分类器对鱼类进行分类。我们收集了一个由四个类/物种组成的数据集。为了验证AdaBoost分类器的结果,我们对三种常用分类器(朴素贝叶斯分类器、k-最近邻分类器和多层感知器)进行了比较。实验结果表明,该方法取得了较好的效果(约96.4%)。此外,我们的模型在不同的实际挑战下,如图像旋转和图像平移,得到了很好的结果。
突出
• 提出了基于生物识别方法的鱼类分类方法。
• 我们的模型采用了韦伯的本地描述符 (WLD) 和颜色特征以及AdaBoost分类器。
• 使用了鱼图像数据集(来自4个类的241张图像)。
• 拟议的模型获得了竞争结果
正文
研究背景
-
鱼类分类对工业、食品生产以及海洋渔业的保护和管理都至关重要。目前,许多商业渔船或船只根据欧共体条例(3703/85,1986)手工将鱼类分类为不同的物种(委员会等,1986年)。然而,手工过程是耗时的,需要很多人工,因此增加了成本。因此,需要一个完全自动化的鱼类分选或分类系统来解决人工处理的问题(Benson et al., 2009;Hasija等,2017)。
-
据报道,动物识别/鉴定可以使用多种不同的方法来实现,这些方法可以分为电子、机械和生物特征识别方法(Gaber et al., 2016)。有许多与机械方法相关的例子,如颚和鳍标记。然而,机械方法有许多局限性,例如它们不适合大规模的识别系统,它们比其他现代方法需要更多的时间(Rusk等,2006)。使用无线射频识别(RFID)等电子方法来识别动物,主要依赖于在鱼身上安装一个包含唯一识别号码的设备。另一种装置被称为阅读装置,它被用来与动物交流并解释动物的密码。然而,所连接的设备可能会丢失、损坏或被移除(Gaber等人,2016)。电子和机械方法的局限性可以用基于生物特征的方法来解决。
-
在基于生物特征的方法中,许多生物特征标记被提出来唯一地识别动物个体(Gaber et al., 2016;Tharwat等,2016a)。这种方法解决了电气法和机械法的缺点。与基于生物特征的人类识别类似,许多生物特征动物标记已被用于识别动物个体(Gonzales Barron et al., 2008; Rusk et al.,
2006; Corkery et al., 2007; Tharwat et al., 2016a)。例如,基于视网膜的识别系统使用视网膜血管,可以从视网膜图像中提取血管作为唯一标识符(Gonzales Barron et al., 2008)。Peirce et al.(2001)也采用了动物面部识别技术;Corkery等人(2007)。此外,DNA生物测定法还被用于识别由每种特定动物生产的肉类和动物产品(Jiménez-Gamero等人,2006)。尽管这种方法比其他生物特征识别方法获得了更高的识别率,但它并不具有成本效益,具有侵入性,而且很耗时(Rusk等人,2006年)。 -
在本文中,我们收集了一个由四个物种组成的数据集,即:阿吉罗索穆斯雷吉乌斯、撒丁岛马德伦西斯、斯科贝罗穆鲁斯·科默森和特拉奇诺图斯·奥瓦图斯。选择这四个物种是因为它们具有特定的营养和功能重要性;因此,这些物种在埃及和世界各地都很常见。分别采用韦伯局部描述子(WLD)法和颜色矩法提取纹理特征和颜色特征。由于WLD特征的高维性,采用线性判别分析(LDA)技术减少特征数量,提高不同类别之间的可分离性。使用AdaBoost分类器可以预测未知样本的类标签,该分类器将未知样本的特征与已标记的或训练数据的特征进行匹配。
相关工作
- 人们提出了许多自动鱼类识别系统(Iscsmen等人,2014;Hnin and Lynn, 2016;Shafait等人,2016)。Cadieux等人提出了一种用于鱼类自动分类和计数的智能系统(Cadieux等人,2000)。他们使用神经网络(NN)进行分类,对于特征,他们使用了一些形状特征,包括不变量矩、傅立叶描述符和9个形状特征,他们的准确率在70.8%到72.7%之间。在另一项研究中,Lee等人介绍了一种鱼类识别和迁移监测系统(Lee等人,2004年)。他们的系统依赖于提取形状,然后应用形状匹配来识别鱼类。他们匹配整个形状和几个形状描述符,如傅立叶描述符,多边形近似,和线段,测试,他们显示的准确性接近60%。Rova等人利用可变形模板匹配提取纹理特征,支持向量机(SVM)进行分类,其模型准确率达到90% (Rova et al., 2007)。而不是像Cadieux等人(2000)那样使用一种特征,我们的模型结合了颜色和纹理特征。
- Chamba等人提取了85个特征,包括几何特征(如面积、周长、延伸率)、颜色特征(如色调、灰度、颜色直方图)、运动特征和纹理特征(如熵和相关性)。他们还使用二次贝叶斯分类器进行分类,准确率达到85.77% (Chambah et al., 2003)。Spampinato等人对来自10个不同类别的320幅鱼类图像进行了分类,准确率为92% (Spampinato et al., 2010)。他们提取纹理和形状特征,如Gabor特征和傅立叶描述子,并采用判别分析分类器。Larsen等人也利用形状和纹理特征结合线性判别分类器对三个物种进行分类,识别率达到76% (Larsen et al., 2009)。Iscsmen et al.(2014)在朴素贝叶斯分类器中使用了三种不同的生物识别技术(欧氏网络技术、二次网络技术、三角剖分技术),对7个物种的准确率为93.10%,对15个物种的准确率为75.71%。由于环境不可控,Shafait et al.(2016)也使用视频图像对鱼类进行分类。他们的目标是在真实环境中对鱼类进行分类和跟踪。以上所有研究均采用单一分类器。然而,我们的模型采用了AdaBoost分类器,该分类器是基于结合不同单分类器的输出来提高分类的鲁棒性。

提出一种基于生物特征的鱼类分类方法,采用韦伯局部描述子和颜色矩提取特征,并使用线性判别分析降低特征维度,最终通过AdaBoost分类器进行分类。实验证明,该方法在不同挑战下仍能获得良好结果。
最低0.47元/天 解锁文章
1075

被折叠的 条评论
为什么被折叠?



