行星减速器
- 组成:太阳轮、行星轮、内齿圈,行星架。
太阳轮:中间位置的齿轮名为太阳轮。
行星轮:太阳轮外侧的三个轮子为行星轮。
内齿圈:最外侧的齿轮圈名为内齿圈。
行星架:与行星轮同步转动的支架。
减速比关系:
固定 | 内齿圈 | 行星轮 | 太阳轮 |
输入 | 太阳轮 | 太阳轮 | 行星轮 |
输出 | 行星轮 | 内齿圈 | 内齿圈 |
减速比 | i=1+Z行星/Z太阳 | i= - Z行星/Z太阳 | i=1+Z太阳/Z行星 |
二、优点和缺点
优点:背隙小,一般都是角秒级。回转间隙小。
体积小、结构紧凑,精度高。
缺点:单极减速倍数小,最大也就是10倍。两级串联减速最大64倍,三级串联最大减速可达到512倍。
三、设计行星减速器的流程:
1、确定用法:确定输入部分和输出部分。
2、确定整体体积:太阳轮半径、行星轮半径。
3、确定减速比。
四、示例
假如想要设计一个减速比为3:1,输入为太阳轮,输出为行星轮。外径100左右的行星减速器,该怎么设计呢?
通过输入输出方式可以得出,它的减速比公式为:i=1+Z行星/Z太阳。那么行星轮的齿数是太阳轮的齿数的2倍。假设取太阳轮的齿数为19,则行星轮的齿数为38。那么内齿圈的分度圆则为19+38+38=95。外径100mm,则可取模数为1.0。则太阳轮的分度圆直径为19mm,行星轮的直径为38mm,内齿圈的分度圆直径为95mm。分别绘制即可。
齿轮的重要参数概念:
模数:
定义:模数是决定齿大小的因素。直齿、斜齿和圆锥齿齿轮的模数皆可参考标准模数系列表(模数不是多少都可以,有标准的)。
两个齿轮能够啮合的条件即两个齿轮的模数必须相等,模数相等即齿的大小相等。压力角相等,不过一般压力角固定为20°,很少有14.5°。
公式:d=mz。
D:分度圆直径
M:模数
Z:齿数
想要画一个齿轮,第一就要确定它的齿子的大小,两个齿子大小不一致的齿轮怎么能啮合呢?
齿数:
定义:齿轮上面的齿子的个数,如右图中的齿数为15。齿数一般用Z表示,但是一般不建议用17齿以下的齿轮。
齿数尽量大于等于17。
啮合齿数互质(各个齿子雨露均沾,防止各别齿子多次啮合导致磨损过快)。
有了模数和齿数,基本上一个齿轮就可以确定80%了。因为其他的参数可以根据这两个参数推到而得出。
中心距:中心距是啮合齿轮的基准圆半径合起来的距离。
中心距=D1+D2/2+0.1㎜(+0.1可以降噪)。
齿厚:
定义:齿的厚度,通常用S表示。齿厚与分度圆、模数的关系如下:
公式:S=πm/2。P=2s。
两个齿厚即为齿距,用P表示。所以分度圆的周长=分度圆直径d*π=p*z。所以分度圆直径d=pz/π=(p/π)*z,将m=(p/π)带入,即可得到模数m = 分度圆直径d / 齿数z = 齿距p /圆周率π。
齿顶圆:过齿轮所有齿顶端的圆称为齿顶圆。其半径用ra表示,直径使用da表示。
齿顶圆直径(da)=模数*(齿数+2)=m*(Z+2)
齿根圆:过所有齿槽底边的圆成为齿根圆。其半径用rf表示,直径用df表示
齿根圆直径(df)=模数*(齿数-2.5)=m*(Z-2.5)
分度圆:为了方便齿轮各部分尺寸的计算,在齿轮上选一个圆作为计算的基准,这个圆就成为分度圆。半径用r表示,直径用d表示。分度圆上的各种参数均不带角标。
分度圆直径(d)=模数*齿数=m*Z
基圆:产生渐开线的圆。基圆直径d(b)= dcosα = mzcosα,压力角α。
直齿轮计算公式:
齿距 | p | P=πm=πd/z |
齿数 | Z | Z=d/m=πd/p |
模数 | m | m=p/π |
分度圆 | d | d=mz |
齿顶圆 | da | da=m(z+2) |
齿根圆 | df | df=m(z-2.5) |
齿高 | h | h=2.25m |
齿顶高 | ha | ha=m |
齿根高 | hf | hf=1.25m |
齿厚 | S | S=p/2 |
中心距 | a | a=mz1+mz2/2 |
齿轮画法:
1、确定模数和齿数:以模数1.0,齿数19为例。
m模数 m=1.0
z 齿数 z=19
国家标准规定:
α 压力角(α=20°)(α=pi/9)
ha* 齿顶高系数 (ha*=1)
c* 顶隙系数 (c*=0.25)
第一步:将m、z带入方程,画出四个圆:
d 分度圆直径
d=m*z=m*z
ha 齿顶圆直径
ha=(z+2ha*)*m=(z+2)*m
hf 齿根圆直径
hf=(z-2ha*-2c*)*m=(z-2-0.5)*m
db 基圆直径
db=d*cos(α)=m*z*cos(pi/9)
rb 基圆半径
rb=db/2=d*cos(pi/9)/2
第二步:将m、z带入方程,画渐开线:
----------------------------------------------------
渐开线方程 (t取0到pi/3)
xt=rb*sin(t)-rb*t*cos(t)
yt=rb*cos(t)+rb*t*sin(t)
↓
xt=m*z*cos(pi/9)/2*sin(t)-m*z*cos(pi/9)/2*t*cos(t)
yt=m*z*cos(pi/9)/2*cos(t)+m*z*cos(pi/9)/2*t*sin(t)
选择方程式驱动的曲线
选择参数性:填入方程,然后把t值范围设定为0~pi/3。输入完毕后,会出现一条黄色的渐开线。
在分度圆与渐开线交点处画一条过圆心的直线,在画一条与这条直线夹角为360/z/4的直线,然后以第二条直线为轴,镜像这条渐开线。
裁剪掉多余部分
剩下的就圆周镜像啥的,我就不多说了(主要是写累了,想去打游戏)。
中心距
a=m*(z1+z2)/2=m*(z1+z2)/2
镜像轴偏移角度1
360/z/4=360/z/4
镜像轴偏移角度2
360/z/4=360/z/4*3