机器学习-Logistic回归

目录

一、Logistic回归概述

1.利用Logistic回归进行分类的主要思想:

2.Logistic回归的优缺点及适用范围:

3.Logistic回归的一般流程:

4.分类器的函数形式:

5.梯度上升:

二、Logistic回归

1.数据集介绍:

2.使用梯度上升找到最佳参数:

3.画出决策边界:

4.随机梯度上升:

5.完整代码:


一、Logistic回归概述

1.利用Logistic回归进行分类的主要思想:

        根据现有数据对分类边界线建立回归公式,以此进行分类。

2.Logistic回归的优缺点及适用范围:

优点:计算代价不高,易于理解和实现。

缺点:容易欠拟合,分类精度可能不高。

适用数据类型:数值型和标称型数据。

3.Logistic回归的一般流程:

(1)收集数据

(2)准备数据:由于需要进行距离的计算,因此准备的数据应该是数值型的,结构化数据格式最佳。

(3)分析数据:对数据进行分析。

(4)训练算法:大部分时间用于训练,目的是为了找到最佳的分类回归系数。

(5)测试算法:一旦训练步骤完成,分类就会很快。

(6)使用算法:首先,输入一些数据,并将其转化成对应的结构化数值;接着,基于训练好的回归系数,可以对这些数值进行简单的回归计算,判定它们属于哪个类别;之后,我们就可以在输出的类别上做一些其他的分析工作。

4.分类器的函数形式:

Sigmoid函数:\sigma (z)=\frac{1}{1+e^{-z} }

        为了实现Logistic回归分类器,我们可以在每个特征上都乘以一个回归系数,然后把所有结果值相加,将这个总和代入Sigmoid函数中,得到一个[0,1]的数值。

5.梯度上升:

基本思想:沿着某函数的梯度方向探寻找到该函数的最大值。

        

        梯度上升算法到达每个点后都会重新估计移动的方向。从 P0 开始,计算完该点的梯度,函数就根据梯度移动到下一点 P1。在 P1 点,梯度再次被重新计算,并沿着新的梯度方向移动到 P2 。如此循环迭代,直到满足停止条件。迭代过程中,梯度算子总是保证我们能选取到最佳的移动方向。

二、Logistic回归

1.数据集介绍:

14.56  7.38  1
25.52  5.63  1
32.42  11.01  1
34.23  2.12  1
28.66  3.38  1
25.55 43.22  0
25.23 43.10  0
25.44 44.12  0
24.54 43.38  0
25.55 41.63  0
24.55 43.01  0
22.56  25.38  1
23.52  34.63  1
15.42  22.01  1
24.23  18.12  1
26.66  12.38  1
15.55 33.22  0
22.23 33.90  0
21.44 34.22  0
14.54 46.38  0
18.55 31.53  0
13.55 29.25  0

本实验采用的是一个简单的数据集

2.训练算法:使用梯度上升找到最佳参数:

(1)优化算法

from numpy import *
import matplotlib.pyplot as plt
import pandas as pd

# Logistic回归梯度上升优化算法
def loadDataSet():
    dataMat = []; labelMat = []
    fr = open('data/testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        # 每行的前两个值是X1和X2
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        # 对应的类标签
        labelMat.append(int(lineArr[2]))
    return dataMat, labelMat
 

# 用于全批量随机梯度上升算法的Sigmoid函数,因为传入值是一个向量,不能比较大小
def gradAscentSigmoid(inX):
    return 1.0 / (1 + exp(-inX))


def gradAscent(dataMatIn, classLabels):
    # 将输入数据转换成Numpy矩阵数据类型
    dataMatrix = mat(dataMatIn)
    labelMat = mat(classLabels).transpose()
    m, n = shape(dataMatrix)
    # 向目标移动的步长
    alpha = 0.001
    # 迭代次数,for循环迭代完成后将返回训练好的回归系数
    maxCycles = 500
    weights = ones((n, 1))
    for k in range(maxCycles):
        # h为一个列向量,[m,n]*[n,1] = [m,1]
        h = gradAscentSigmoid(dataMatrix * weights)
        # 真实值与预测值之差
        error = (labelMat - h)
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights

(2)测试

dataArr,labelMat=loadDataSet()
gradAscent(dataArr,labelMat)

(3)结果

3.分析数据:画出决策边界:

(1)相关函数

# 画出数据集和Logistic回归最佳拟合直线的函数
def plotBestFit(weights):
    # 得到数据集列表和类标签列表
    dataMat, labelMat = loadDataSet()
    # 将由列表存储的数据集转换为array类型
    dataArr = array(dataMat)
    # 样本的个数
    n = shape(dataArr)[0]
    # 定义两个空数组,用来存放不同label的x1(x)和x2(y)值
    xcord1 = [];ycord1 = []
    xcord2 = [];ycord2 = []
    for i in range(n):
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i, 1]);ycord1.append(dataArr[i, 2])
        else:
            xcord2.append(dataArr[i, 1]);ycord2.append(dataArr[i, 2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    # 画出最佳拟合直线
    x = arange(0.0, 30.0, 0.1)
    # 设置sigmoid函数为0,0=W0X0+W1X1+W2X2,解出X1,X2的关系式得到分割线方程(为方便计算,X0=1)
    y = (-weights[0] - weights[1] * x) / weights[2]
    ax.plot(x, y)
    plt.xlabel('X1');plt.ylabel('X2');plt.show()

 (2)测试

dataArr,labelMat=loadDataSet()
weights=gradAscent(dataArr,labelMat)
plotBestFit(weights.getA())

 (3)结果

4.训练算法:随机梯度上升:

(1)梯度上升算法

# 改进的随机梯度上升算法
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m, n = shape(dataMatrix)
    weights = ones(n)
    for j in range(numIter):
        dataIndex = list(range(m))
        for i in range(m):
            alpha = 4 / (1.0 + j + i) + 0.01
            randIndex = int(random.uniform(0, len(dataIndex)))
            h = gradAscentSigmoid(sum(dataMatrix[randIndex] * weights))
            error = classLabels[randIndex] - h  
            weights = weights + alpha * error * dataMatrix[randIndex]
            # 删除已使用的样本
            del(dataIndex[randIndex])
    return weights

(2)测试

dataArr,labelMat=loadDataSet()
weights=stocGradAscent1(array(dataArr),labelMat)
plotBestFit(weights)

(3)结果

        程序运行后得到与之前类似的结果图,该图中的分割线达到了与gradAscent()差不多的效果,但是所使用的计算量更少。

5.完整代码:

from numpy import *
import matplotlib.pyplot as plt
import pandas as pd

# Logistic回归梯度上升优化算法
def loadDataSet():
    dataMat = []; labelMat = []
    fr = open('data/testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        # 每行的前两个值是X1和X2
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        # 对应的类标签
        labelMat.append(int(lineArr[2]))
    return dataMat, labelMat
 

# 用于全批量随机梯度上升算法的Sigmoid函数,因为传入值是一个向量,不能比较大小
def gradAscentSigmoid(inX):
    return 1.0 / (1 + exp(-inX))


'''
# 用改进的随机梯度上升算法替换该算法 #

def gradAscent(dataMatIn, classLabels):
    # 将输入数据转换成Numpy矩阵数据类型
    dataMatrix = mat(dataMatIn)
    labelMat = mat(classLabels).transpose()
    m, n = shape(dataMatrix)
    # 向目标移动的步长
    alpha = 0.001
    # 迭代次数,for循环迭代完成后将返回训练好的回归系数
    maxCycles = 500
    weights = ones((n, 1))
    for k in range(maxCycles):
        # h为一个列向量,[m,n]*[n,1] = [m,1]
        h = gradAscentSigmoid(dataMatrix * weights)
        # 真实值与预测值之差
        error = (labelMat - h)
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights
'''


# 画出数据集和Logistic回归最佳拟合直线的函数
def plotBestFit(weights):
    # 得到数据集列表和类标签列表
    dataMat, labelMat = loadDataSet()
    # 将由列表存储的数据集转换为array类型
    dataArr = array(dataMat)
    # 样本的个数
    n = shape(dataArr)[0]
    # 定义两个空数组,用来存放不同label的x1(x)和x2(y)值
    xcord1 = [];ycord1 = []
    xcord2 = [];ycord2 = []
    for i in range(n):
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i, 1]);ycord1.append(dataArr[i, 2])
        else:
            xcord2.append(dataArr[i, 1]);ycord2.append(dataArr[i, 2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    # 画出最佳拟合直线
    x = arange(0.0, 30.0, 0.1)
    # 设置sigmoid函数为0,0=W0X0+W1X1+W2X2,解出X1,X2的关系式得到分割线方程(为方便计算,X0=1)
    y = (-weights[0] - weights[1] * x) / weights[2]
    ax.plot(x, y)
    plt.xlabel('X1');plt.ylabel('X2');plt.show()


# 改进的随机梯度上升算法
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m, n = shape(dataMatrix)
    weights = ones(n)
    for j in range(numIter):
        dataIndex = list(range(m))
        for i in range(m):
            alpha = 4 / (1.0 + j + i) + 0.01
            randIndex = int(random.uniform(0, len(dataIndex)))
            h = gradAscentSigmoid(sum(dataMatrix[randIndex] * weights))
            error = classLabels[randIndex] - h  
            weights = weights + alpha * error * dataMatrix[randIndex]
            # 删除已使用的样本
            del(dataIndex[randIndex])
    return weights


dataArr,labelMat=loadDataSet()
weights=stocGradAscent1(array(dataArr),labelMat)
plotBestFit(weights)

参考教材:

机器学习实战

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: Lasso-Logistic 回归是一种机器学习,通常用于分类问题。它结合了 Lasso 回归和逻辑回归,通过约束模型的复杂度和使用 Ridge 或 Lasso 正则化方,来避免过拟合和增强模型的泛化能力。 ### 回答2: Lasso-Logistic回归是指利用L1正则化(Lasso)的Logistic回归模型。在正则化的过程中,Lasso控制模型的复杂度,将一些不重要或冗余的特征系数进行缩减或者剔除,从而对模型进行正则化,减小了过拟合的可能性,从而提高了模型的泛化能力。 Lasso-Logistic回归在变量筛选方面起到了非常好的作用,当统计样本量较小时,选择太多的变量极易导致过拟合,而Lasso-Logistic回归可以筛选出最有用的变量,从而提高模型的准确性。此外,由于L1正则化的作用,选择出来的变量往往都具有较高的稳定性和较强的解释性。 在R语言中,我们可以使用glmnet包中的函数进行Lasso-Logistic回归。glmnet包中的glmnet函数可以支持L1和L2正则化,因此我们可以使用alpha参数进行控制。lambda参数则控制正则化程度,值越大则正则化越强,选择过少的变量,反之则选择过多的变量。在进行Lasso-Logistic回归时,我们需要将训练集数据带入函数中,并使用交叉验证方进行模型选择,以避免过拟合的情况。 总之,Lasso-Logistic回归作为一种广泛应用的回归,在逻辑回归模型中得到了广泛的应用,对于特征选择和过拟合问题的解决提供了一种有效的途径,对于解决实际问题具有重要的应用意义。在R语言中,我们可以方便的使用glmnet包实现Lasso-Logistic回归,提高模型的准确性和解释性。 ### 回答3: Lasso-logistic回归是一种在R语言中常用的模型选择方,其目的是选择一组最相关的预测变量,同时将未相关的变量系数缩小甚至将其系数设为0。 在R语言中,可以使用glmnet函数实现lasso-logistic回归,该函数基于glm函数,但增加了弹性网络正则化。因此,需要引入glmnet包,并使用cv.glmnet函数进行交叉验证,从而选择最优的模型。 具体来说,可以按照以下步骤进行lasso-logistic回归: 1. 准备数据。将数据拆分为训练集和测试集,并进行预处理,包括标准化、离散化等。 2. 构建模型。使用glmnet函数进行建模,设置family参数为“binomial”,即二分类问题,alpha参数为1,即使用lasso正则化。 3. 选择最优模型。使用cv.glmnet函数进行交叉验证,选择最佳的lambda值和alpha值。lambda值控制模型的复杂度,越大模型越简单,模型系数趋近于0;alpha值控制lasso和ridge正则化的占比,当alpha为1时,为lasso正则化,为0时,为ridge正则化。 4. 使用最优模型进行预测。使用predict函数对测试数据进行预测,并计算模型的准确率、召回率、精确率等指标进行模型评估。 总之,lasso-logistic回归是一种有效的模型选择方,在R语言中使用glmnet函数可以方便地实现。需要注意的是,选择合适的正则化参数对模型的性能具有重要影响,因此需要进行交叉验证来寻找最优模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值