第四章——绕翼型的不可压缩流动

        本章重点是通过理论手段研究翼型的升力和俯仰力矩特性,利用第三章势流理论研究翼型的气动特性,具体路线图如下。中间路线是本章的核心思想。

     一、描述翼型形状的几何参数

          

         最为重要的是弦长,翼型的其他几何参数大多都已弦长作为基准,比如NACA2412就表示中弧线(弯度线)的最大拱高(弯度)为0.02c,位于0.4c的位置,其厚度为0.12c。无弯度翼型称为对称翼型,其弯度线与弦线重合。

二、翼型的特征参数

        图示为翼型升力系数随攻角变化的曲线图,升力曲线直线段的斜率在后续通过理论分析可以得到一固定值。在攻角增大到一定时,发生流动分离,机翼升力系数突然下降,即发生失速现象。

         上图是对翼型上的一个点测试所得的阻力和力矩曲线,可以看出力矩基本保持不变,定义该点为翼型的气动中心,对应前面所学的压力中心,压力中心是对该点翼型的力矩为零,两者有一定的区别,在后面会进行区分。

三、本章的理论体系

        简单在这里做一个概述,本章主要是以涡面的定义及应用为重点,通过流动叠加原理、物理边界条件和翼型后缘条件的定义,建立起对低速无黏流体绕流进行求解的理论体系,也是本章的核心。

1、涡面

 

        在第三章最后提到利用面源法求解无升力流动,当时没看太懂,学到这里正好可以作为对比来进行学习。源面和涡面本质上都是将无数的源线或涡线组合在一起形成面,与自由流叠加,形成特定的绕流流场,不同的是源面不产生环量,故只能解决无升力的绕流。

        通过定义涡线强度,求得其流场的势函数,方便后续与自由流叠加。

         环量就等于涡强度在线上的积分:

        2、物理边界条件——库塔条件

        对于势流方程有无穷多的解,因此我们必须给出其边界条件。

        库塔条件可以简单概述为三点:(1)在绕流翼型启动结束后,流动会在翼型的上下表面光顺的流过并离开,即贴壁流动。(2)如果机翼后缘存在一定角度,则该点为驻点,速度为零。(3)如果机翼后缘为一条线,则该点的速度为以有限值,上下表面速度相等。后两点实际上可以表达为机翼后缘的环量为0

        库塔条件是试验观察所得,实际上必须在黏性作用下才满足,近似用在我们的理论分析。

        3、开尔文环量定理与启动涡

       

        

         开尔文环量定理即封闭曲线的环量是守恒的。在飞机气动时,由于机翼上下层表面速度不一致,在尾部形成剪切层,产生了涡,成为启动涡。

        根据开尔文环量定理,在机翼表面会形成一个顺时针的环量,与启动涡相抵消。随着起动过程的继续,来自尾缘的涡量不断地被送入起动涡,使其变得更强,从而产生更大的逆时针环流,反过来,翼型周围的顺时针环流变强,使得尾缘处的流动更加接近库塔条件,从而减弱了尾缘脱落的涡量。最后,启动涡建立到刚好合适的强度,使得翼型周围顺时针正反相等的环量使得尾缘( Kutta条件恰好满足)处的流动变得光滑。

        总结库塔条件和启动涡,即:对于一个给定攻角和形状的翼型,绕翼型的环量会自然确定为一个特定值,以保证流动从后缘平滑的流过。如果后缘的夹角不为零,则后缘是一个驻点;如果上下表面后缘相切,则从上下表面流过的速度大小相等、方向相同,两种条件下,在其后缘的环量都为0.

四、经典薄翼理论

1、基本方程

        薄翼理论建立在用弯度线代替翼型的基础上。涡面布置在弦线上,对于涡的强度分布应该保证:在叠加了自由来流后,其弯度线应该为一流线,同时满足库塔条件。

        在垂直与弯度线方向上,通过叠加涡面诱导速度和自由来流的速度分量得到薄翼理论的基本方程:

        对于后续分析机翼的升力和力矩特性,解出涡量强度分布是关键,从方程中可以看出,仅含有涡量强度一个未知量,通过替换变量,显然是可以求解的。

2、薄翼理论结果

        偷个懒,我直接截屏了。

         在薄翼理论结果中,都讨论了气动中心和压力中心的位置,气动中心是其力矩不随攻角改变的点,压力中心是其力矩为0的点,其实气动中心这个定义我现在还有些不能接收(直观感受上),怎么会有这么神奇的点,在书上推导了常规翼型的气动中心,与升力系数曲线和力矩曲线斜率有关,但基本在0.25弦长附近。因为压力中心是在随攻角变换的,为了有利于分析机翼的受力控制,会选用气动中心。

五、有升力绕流物体的数值解法——涡板块法

        当遇到复杂外形的绕流问题是吧,薄翼理论不再使用,此时和源版法类似,利用有限的直线段代替外部复杂曲线,假定各个平板上的涡强度均为常数,根据壁面法向速度为0这个条件建立线性方程组联立求解。

         与源板法不同的是,涡板法需要添加一个库塔条件,这以为这需要从方程组中去掉一个平板的控制方程才能使方程有解。

阅读感想:这一章的核心思想就是利用涡面代替实际壁面与自由来流叠加形成绕流流场。实际上,作者穿插了很多其他的概念在里面,但阅读起来还是比较舒服。尽管是全英文的,我感觉要比国内一些教材好的太多,思想逻辑很清晰。不知不觉已经读了400多页了,没有想象中那么难读,坚持!

         

        

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值