2.1 空间向量与立体解析几何

第二章 线性代数

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

2.1 空间向量与立体解析几何

  1. 三维向量的点积与叉积

    a = ( a 1 , a 2 , a 3 ) , b = ( b 1 , b 2 , b 3 ) \boldsymbol{a}=(a_1,a_2,a_3),\boldsymbol{b}=(b_1,b_2,b_3) a=(a1,a2,a3),b=(b1,b2,b3),则

    a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ ( a , b ) = a 1 b 1 + a 2 b 2 + a 3 b 3 \boldsymbol{a}\cdot\boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}|\cos(\boldsymbol{a},\boldsymbol{b})=a_1b_1+a_2b_2+a_3b_3 ab=a∣∣bcos(a,b)=a1b1+a2b2+a3b3

    a × b = ∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ \boldsymbol{a}\times\boldsymbol{b}=\begin{vmatrix}\boldsymbol{i}&\boldsymbol{j}&\boldsymbol{k}\\a_1&a_2&a_3\\b_1&b_2&b_3\end{vmatrix} a×b= ia1b1ja2b2ka3b3 ,方向满足右手系

  2. 三维向量的混合积

    [ a , b , c ] = ( a × b ) ⋅ c = ∣ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ∣ [\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}]=(\boldsymbol{a}\times\boldsymbol{b})\cdot \boldsymbol{c}=\begin{vmatrix}a_1&a_2&a_3\\b_1&b_2&b_3\\c_1&c_2&c_3\end{vmatrix} [a,b,c]=(a×b)c= a1b1c1a2b2c2a3b3c3

  3. 向量间的关系

    a ⊥ b ⇔ a ⋅ b = 0 \boldsymbol{a}\bot\boldsymbol{b}\Leftrightarrow\boldsymbol{a} \cdot\boldsymbol{b}=0 abab=0

    a / / b ⇔ a × b = 0 ⇔ λ a = μ b \boldsymbol{a}//\boldsymbol{b}\Leftrightarrow\boldsymbol{a}\times\boldsymbol{b}=0\Leftrightarrow\lambda\boldsymbol{a}=\mu\boldsymbol{b} a//ba×b=0λa=μb,其中 λ , μ \lambda,\mu λ,μ不全为零

    a , b , c \boldsymbol{a},\boldsymbol{b},\boldsymbol{c} a,b,c共面 ⇔ a , b , c \Leftrightarrow\boldsymbol{a},\boldsymbol{b},\boldsymbol{c} a,b,c线性相关 ⇔ [ a , b , c ] = 0 \Leftrightarrow[\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}]=0 [a,b,c]=0

  4. 平面方程

    ( 1 ) 点法式 : A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 ( 2 ) 一般式 : A x + B y + C z + D = 0 ( 3 ) 截距式 : x a + y b + z c = 1 ( 4 ) 通过直线 { L 1 ( x , y , z ) = 0 L 2 ( x , y , z ) = 0 的平面束方程 : λ L 1 + μ L 2 = 0 \begin{aligned} &(1)点法式:A(x-x_0)+B(y-y_0)+C(z-z_0)=0\\ &(2)一般式:Ax+By+Cz+D=0\\ &(3)截距式:\frac xa+\frac yb+\frac zc=1\\ &(4)通过直线\begin{cases}L_1(x,y,z)=0\\L_2(x,y,z)=0\end{cases}的平面束方程:\lambda L_1+\mu L_2=0 \end{aligned} (1)点法式:A(xx0)+B(yy0)+C(zz0)=0(2)一般式:Ax+By+Cz+D=0(3)截距式:ax+by+cz=1(4)通过直线{L1(x,y,z)=0L2(x,y,z)=0的平面束方程:λL1+μL2=0

  5. 空间直线方程

    ( 1 ) 对称式 : x − x 0 m = y − y 0 n = z − z 0 p ( 2 ) 参数式 : { x = x 0 + m t y = y 0 + n t z = z 0 + p t ( 3 ) 一般式 : { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 \begin{aligned} &(1)对称式:\frac{x-x_0}m=\frac{y-y_0}n=\frac{z-z_0}p\\ &(2)参数式:\begin{cases}x=x_0+mt\\y=y_0+nt\\z=z_0+pt\end{cases}\\ &(3)一般式:\begin{cases}A_1x+B_1y+C_1z+D_1=0\\A_2x+B_2y+C_2z+D_2=0\end{cases} \end{aligned} (1)对称式:mxx0=nyy0=pzz0(2)参数式: x=x0+mty=y0+ntz=z0+pt(3)一般式:{A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0

  6. 点、空间直线、平面之间的关系

    设平面 π 1 , π 2 \pi_1,\pi_2 π1,π2的法向量为 n 1 , n 2 \boldsymbol{n}_1,\boldsymbol{n}_2 n1,n2,直线 L 1 , L 2 L_1,L_2 L1,L2的切向量为 s 1 , s 2 \boldsymbol{s}_1,\boldsymbol{s}_2 s1,s2,则

    相互垂直 ⇔ \Leftrightarrow 对应向量点积为零

    相互平行 ⇔ \Leftrightarrow 对应向量叉积为零向量

    平面夹角余弦: cos ⁡ θ = n 1 ⋅ n 2 ∣ n 1 ∣ ∣ n 2 ∣ \cos\theta=\frac{\boldsymbol{n}_1\cdot\boldsymbol{n}_2}{|\boldsymbol{n}_1||\boldsymbol{n}_2|} cosθ=n1∣∣n2n1n2

    直线夹角余弦: cos ⁡ θ = s 1 ⋅ s 2 ∣ s 1 ∣ ∣ s 2 ∣ \cos\theta=\frac{\boldsymbol{s}_1\cdot\boldsymbol{s}_2}{|\boldsymbol{s}_1||\boldsymbol{s}_2|} cosθ=s1∣∣s2s1s2

    直线与平面夹角的正弦: sin ⁡ θ = n ⋅ s ∣ n ∣ ∣ s ∣ \sin\theta=\frac{\boldsymbol{n}\cdot\boldsymbol{s}}{|\boldsymbol{n}||\boldsymbol{s}|} sinθ=n∣∣sns

    ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)到平面 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0的距离

    d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d=\frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 Ax0+By0+Cz0+D

  7. 曲面方程

    旋转曲面: { f ( y , z ) = 0 x = 0 \begin{cases}f(y,z)=0\\x=0\end{cases} {f(y,z)=0x=0 z z z轴旋转的旋转曲面方程是 f ( ± x 2 + y 2 , z ) = 0 f(\pm\sqrt{x^2+y^2},z)=0 f(±x2+y2 ,z)=0

    柱面:准线为 { f ( x , y ) = 0 z = 0 \begin{cases}f(x,y)=0\\z=0\end{cases} {f(x,y)=0z=0,母线平行于 z z z轴的柱面方程是 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0

  8. 二次曲面

    球面: x 2 + y 2 + z 2 = r 2 x^2+y^2+z^2=r^2 x2+y2+z2=r2

    椭球面: x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1

    圆锥面: z 2 = a 2 ( x 2 + y 2 ) z^2=a^2(x^2+y^2) z2=a2(x2+y2)

    椭圆锥面: x 2 a 2 + y 2 b 2 = z 2 \frac{x^2}{a^2}+\frac{y^2}{b^2}=z^2 a2x2+b2y2=z2

    单叶双曲面: x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2+b2y2c2z2=1

    双叶双曲面: x 2 a 2 − y 2 b 2 − z 2 c 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2b2y2c2z2=1

    椭圆抛物面: x 2 a 2 + y 2 b 2 = z \frac{x^2}{a^2}+\frac{y^2}{b^2}=z a2x2+b2y2=z

    双曲抛物面(马鞍面): x 2 a 2 − y 2 b 2 = z \frac{x^2}{a^2}-\frac{y^2}{b^2}=z a2x2b2y2=z

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值