样式迁移及代码

一、定义

1、使用卷积神经网络,自动将一个图像中的风格应用在另一图像之上,即风格迁移;两张输入图像:一张是内容图像,另一张是风格图像

2、训练一些样本使得样本在一些cnn的特征上跟样式图片很相近,在一些cnn的特征上跟内容图片很像,关键在于该怎么样定义内容是一样的,样式是一样的

3、方法:

        (1)我们初始化合成图像,例如将其初始化为内容图像

        (2)该合成图像是风格迁移过程中唯一需要更新的变量,即风格迁移所需迭代的模型参数

        (3)选择一个预训练的卷积神经网络来抽取图像的特征,其中的模型参数在训练中无须更新(VGG系列对于抽取特征效果不错)

4、风格迁移常用的损失函数组成:

        (1)内容损失使合成图像与内容图像在内容特征上接近;

        (2)风格损失使合成图像与风格图像在风格特征上接近;

        (3)全变分损失则有助于减少合成图像中的噪点。

5、样式就是通道里面的像素的统计信息和通道之间的统计信息。假设两张图片它的样式是一样的,那么他们卷积层的一些输出,他们通道之间的统计分布和通道里面统计分布是差不多匹配的;

6、样式损失是指匹配通道内的统计信息和通道之间的统计信息(可以理解为匹配一阶二阶三阶的统计信息,一阶可以是均值,二阶可以是协方差),把feature map里通道作为一维,然后将通道里面的像素拉成一个向量,然后做协方差矩阵,去计算一个多维度的随机变量的二阶信息去匹配分布。

二、代码

1、内容及样式读取

d2l.set_figsize()
#读取内容图片(风景照片)
content_img = d2l.Image.open('../img/rainier.jpg')
#读取样式图片(油画)
style_img = d2l.Image.open('../img/autumn-oak.jpg')

2、预处理与后处理

        预处理函数preprocess对输入图像在RGB三个通道分别做标准化,并将结果变换成卷积神经网络接受的输入格式。 后处理函数postprocess则将输出图像中的像素值还原回标准化之前的值。

#将一张图片转化为可以训练的tensor
def preprocess(img, image_shape):
    transforms = torchvision.transforms.Compose([
        torchvision.transforms.Resize(image_shape),
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize(mean=rgb_mean, std=rgb_std)])
    #对输入图像应用之前定义的变换序列,得到一个张量,并在0维度上添加一个新的维度(通道)
    return transforms(img).unsqueeze(0)

#将一个训练好的tensor转化为图片
def postprocess(img):
    img = img[0].to(rgb_std.device)
    img = torch.clamp(img.permute(1, 2, 0) * rgb_std + rgb_mean, 0, 1)
    return torchvision.transforms.ToPILImage()(img.permute(2, 0, 1))

3、抽取图像特征

#使用基于ImageNet数据集预训练的VGG-19模型来抽取图像特征
pretrained_net = torchvision.models.vgg19(pretrained=True)

#浅层是局部,越接近输出层越全局;样式既想要一些局部的信息,也想要一些全局的信息
style_layers, content_layers = [0, 5, 10, 19, 28], [25]

#要的是28层以内的层(为啥老师写的是(max(content_layers + style_layers))
net = nn.Sequential(*[pretrained_net.features[i] for i in
                      range(max(content_layers , style_layers) + 1)])

def extract_features(X, content_layers, style_layers):
    contents = []
    styles = []
    for i in range(len(net)):
        X = net[i](X)
        if i in style_layers:
            styles.append(X)
        if i in content_layers:
            contents.append(X)
    return contents, styles

#对内容图像抽取内容特征
def get_contents(image_shape, device):
    content_X = preprocess(content_img, image_shape).to(device)
    contents_Y, _ = extract_features(content_X, content_layers, style_layers)
    return content_X, contents_Y

#对风格图像抽取风格特征
def get_styles(image_shape, device):
    style_X = preprocess(style_img, image_shape).to(device)
    _, styles_Y = extract_features(style_X, content_layers, style_layers)
    return style_X, styles_Y

4、定义损失函数

# 内容损失
def content_loss(Y_hat, Y):
    # 我们从动态计算梯度的树中分离目标:
    # 这是一个规定的值,而不是一个变量。
    return torch.square(Y_hat - Y.detach()).mean()

#风格损失
def gram(X):
    # X图像的特征,形状为(batch_size, num_channels, height, width);n特征图的元素总数除以通道数(高度和宽度的乘积)
    num_channels, n = X.shape[1], X.numel() // X.shape[1]
    #将特征图的每个通道展开成一个一维的向量
    X = X.reshape((num_channels, n))
    #通过计算特征图中所有通道对的内积,每个元素表示两个通道的相关性
    return torch.matmul(X, X.T) / (num_channels * n)

def style_loss(Y_hat, gram_Y):
    return torch.square(gram(Y_hat) - gram_Y.detach()).mean()

# 全变分损失
def tv_loss(Y_hat):
    return 0.5 * (torch.abs(Y_hat[:, :, 1:, :] - Y_hat[:, :, :-1, :]).mean() +
                  torch.abs(Y_hat[:, :, :, 1:] - Y_hat[:, :, :, :-1]).mean())

#损失函数
content_weight, style_weight, tv_weight = 1, 1e3, 10

def compute_loss(X, contents_Y_hat, styles_Y_hat, contents_Y, styles_Y_gram):
    # 分别计算内容损失、风格损失和全变分损失
    contents_l = [content_loss(Y_hat, Y) * content_weight for Y_hat, Y in zip(
        contents_Y_hat, contents_Y)]
    styles_l = [style_loss(Y_hat, Y) * style_weight for Y_hat, Y in zip(
        styles_Y_hat, styles_Y_gram)]
    tv_l = tv_loss(X) * tv_weight
    # 对所有损失求和
    l = sum(10 * styles_l + contents_l + [tv_l])
    return contents_l, styles_l, tv_l, l

5、初始化合成图像

        将合成的图像视为模型参数。模型的前向传播只需返回模型参数即可

class SynthesizedImage(nn.Module):
    def __init__(self, img_shape, **kwargs):
        super(SynthesizedImage, self).__init__(**kwargs)
        self.weight = nn.Parameter(torch.rand(*img_shape))

    def forward(self):
        return self.weight

        创建了合成图像的模型实例,并将其初始化为图像X,风格图像在各个风格层的格拉姆矩阵styles_Y_gram将在训练前预先计算好。

def get_inits(X, device, lr, styles_Y):
    #生成图像的起始状态就是 X 的值,这样训练快一点
    gen_img = SynthesizedImage(X.shape).to(device)
    gen_img.weight.data.copy_(X.data)
    #Adam 优化器,用于优化生成图像的参数,目的是最小化损失函数,从而生成符合目标风格和内容的图像
    trainer = torch.optim.Adam(gen_img.parameters(), lr=lr)
    #对每张样式图像 Y 计算 Gram 矩阵,用于衡量风格特征
    styles_Y_gram = [gram(Y) for Y in styles_Y]
    return gen_img(), styles_Y_gram, trainer

6、训练模型

def train(X, contents_Y, styles_Y, device, lr, num_epochs, lr_decay_epoch):
    X, styles_Y_gram, trainer = get_inits(X, device, lr, styles_Y)
    scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_decay_epoch, 0.8)
    animator = d2l.Animator(xlabel='epoch', ylabel='loss',
                            xlim=[10, num_epochs],
                            legend=['content', 'style', 'TV'],
                            ncols=2, figsize=(7, 2.5))
    for epoch in range(num_epochs):
        trainer.zero_grad()
        contents_Y_hat, styles_Y_hat = extract_features(
            X, content_layers, style_layers)
        contents_l, styles_l, tv_l, l = compute_loss(
            X, contents_Y_hat, styles_Y_hat, contents_Y, styles_Y_gram)
        l.backward()
        trainer.step()
        scheduler.step()
        if (epoch + 1) % 10 == 0:
            animator.axes[1].imshow(postprocess(X))
            animator.add(epoch + 1, [float(sum(contents_l)),
                                     float(sum(styles_l)), float(tv_l)])
    return X

device, image_shape = d2l.try_gpu(), (300, 450)
net = net.to(device)
content_X, contents_Y = get_contents(image_shape, device)
_, styles_Y = get_styles(image_shape, device)
output = train(content_X, contents_Y, styles_Y, device, 0.3, 500, 50)

三、总结

1、风格迁移常用的损失函数由3部分组成:

        (1)内容损失使合成图像与内容图像在内容特征上接近;

        (2)风格损失令合成图像与风格图像在风格特征上接近;

        (3)全变分损失则有助于减少合成图像中的噪点。

2、我们可以通过预训练的卷积神经网络来抽取图像的特征,并通过最小化损失函数来不断更新合成图像来作为模型参数。

3、我们使用格拉姆矩阵表达风格层输出的风格。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值