YOLOv11改进 | Neck篇 | 双向特征金字塔网络BiFPN助力YOLOv11有效涨点

 一、本文介绍

本文给大家带来的改进机制是BiFPN双向特征金字塔网络,其是一种特征融合层的结构,也就是我们本文改进YOLOv11模型中的Neck部分,它的主要思想是通过多层级的特征金字塔和双向信息传递来提高精度。本文给大家带来的结构可以让大家自行调节网络结构大小,同时能够达到一定的轻量化效果,为什么发BiFPN呢因为它算是YOLO系列改进中的常青树了,大家可以借鉴它的双向特征思想来创新自己的Neck结构本文的BiFPN通过yaml文件配置可以让大家自行调配其结构

专栏回顾:YOLOv11有效涨点专栏——本专栏持续复习各种顶会内容——科研必备 


目录

 一、本文介绍

二、BiFPN原理

2.1 BiFPN的基本原理

2.2 双向特征融合

2.3 加权融合机制

2.4 结构优化

三、BiFPN代码 

四、手把手教你修改BiFPN

 4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、正式训练

5.1 yaml文件

 5.2 训练代码 

<

### YOLOv11BiFPN 结构的改进 #### 特性描述 在YOLOv11中,BiFPN双向特征金字塔网络)得到了进一步增强。这种结构不仅继承了传统FPN的优,在自上而下路径基础上增加了自底向上的连接方式,还引入了一些新的机制来提升小物体检测效果[^3]。 #### 优化细节 为了更好地处理不同尺度的目标尤其是小型目标,YOLOv11版本中的BiFPN实现了如下几个方面的改进: - **加权特征融合**:不同于简单的相加操作,新版BiFPN采用可学习权重的方式来进行跨层特征融合。这使得模型能够自动调整各层次贡献度,从而获得更加鲁棒且高质量的中间表示形式[^4]。 - **深度可控卷积(DCConv)**:针对原有标准卷积可能带来的信息损失问题,加入了Depthwise Separable Convolutions作为默认选项之一。该方法可以在保持计算效率的同时增加感受野大小,有助于捕捉更多上下文线索[^1]。 - **多尺度训练策略**:考虑到实际应用场景下的多样性需求,采用了动态变化输入尺寸的方法进行预训练阶段的数据增广。这样可以促使网络学会适应各种比例变换情况下的特征提取任务,间接增强了对于小目标识别的能力[^2]。 ```python def bifpn_layer(features, num_channels=256): P3_in, P4_in, P5_in = features # Top-down pathway with weighted fusion and depth-wise separable convolutions P5_td = tf.keras.layers.Conv2D(num_channels, kernel_size=(1, 1), padding='same')(P5_in) P4_td = tf.keras.layers.Add()([ tf.keras.layers.UpSampling2D()(P5_td), tf.keras.layers.DepthwiseConv2D(kernel_size=(3, 3), padding='same')(P4_in)]) P3_out = tf.keras.layers.Add()([ tf.keras.layers.UpSampling2D()(P4_td), tf.keras.layers.DepthwiseConv2D(kernel_size=(3, 3), padding='same')(P3_in)]) # Bottom-up pathway similarly implemented... ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值