YOLOv11改进 | Neck篇 | 双向特征金字塔网络BiFPN助力YOLOv11有效涨点

 一、本文介绍

本文给大家带来的改进机制是BiFPN双向特征金字塔网络,其是一种特征融合层的结构,也就是我们本文改进YOLOv11模型中的Neck部分,它的主要思想是通过多层级的特征金字塔和双向信息传递来提高精度。本文给大家带来的结构可以让大家自行调节网络结构大小,同时能够达到一定的轻量化效果,为什么发BiFPN呢因为它算是YOLO系列改进中的常青树了,大家可以借鉴它的双向特征思想来创新自己的Neck结构本文的BiFPN通过yaml文件配置可以让大家自行调配其结构

专栏回顾:YOLOv11有效涨点专栏——本专栏持续复习各种顶会内容——科研必备 


目录

 一、本文介绍

二、BiFPN原理

2.1 BiFPN的基本原理

2.2 双向特征融合

2.3 加权融合机制

2.4 结构优化

三、BiFPN代码 

四、手把手教你修改BiFPN

 4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、正式训练

5.1 yaml文件

 5.2 训练代码 

<

### 关于 YOLOv11BiFPN 技术资料 目前公开可获取的技术资料主要集中在较早版本的YOLO系列模型上,例如YOLOv5。对于特定提到的YOLOv11以及其与BiFPN结合的具体实现和技术文档,在现有资源中并未找到直接对应的信息[^2]。 然而,考虑到YOLO架构的发展趋势和社区贡献模式,可以推测YOLOv11可能延续了前代版本的一些特性并进行了优化升级。基于此逻辑推理: #### 可能的研究方向 - **继承自YOLOv5的设计理念**:由于YOLOv5已经支持通过添加BiFPN来增强特征提取能力,后续版本很可能保留这一设计思路,并在此基础上做进一步改进。 #### 实现建议 为了探索YOLOv11BiFPN的潜在组合方式,可以从以下几个方面入手: - 查阅最新的学术论文数据库(如arXiv),寻找有关最新版YOLO及其变体的工作; - 加入专门讨论计算机视觉算法尤其是目标检测领域的论坛或社群,与其他研究者交流心得; - 浏览GitHub等开源平台上的相关项目页面,关注是否有开发者分享了针对新版本YOLO的实验成果。 ```python # 假设存在一个名为 yolov11_bifpn.py 的脚本实现了上述功能 import torch from models.experimental import attempt_load from utils.general import non_max_suppression, scale_coords from utils.torch_utils import select_device def load_model(weights='yolov11.pt', device=''): # Load model with specified weights on given device dev = select_device(device) model = attempt_load(weights, map_location=dev) # local model only as an example return model model = load_model() ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值