MOS管G极与S极之间的电阻作用

MOS管具有三个内在的寄生电容:Cgs、Cgd、Cds。这一点在MOS管的规格书中可以体现(规格书常用Ciss、Coss、Crss这三个参数代替)。MOS管之所以存在米勒效应,以及GS之间要并电阻,其源头都在于这三个寄生电容。

MOS管内部寄生电容示意

IRF3205寄生电容参数

1.MOS管的米勒效应

MOS管驱动之理想与现实

理想的MOS管驱动波形应是方波,当Cgs达到门槛电压之后, MOS管就会进入饱和导通状态。而实际上在MOS管的栅极驱动过程中,会存在一个米勒平台。米勒平台实际上就是MOS管处于“放大区”的典型标志,所以导致开通损耗很大。由此可见,米勒效应是一个对电路不利的却又客观存在的现象,在设计电路时需要加以考虑。

米勒平台形成的详细过程:

MOS管开启过程

将MOS管开启时间分解:

t0→t1:当GS两端电压达到门限电压Vgs(th)的时候(可以理解为对Cgs进行充电),MOS管开始导通,这之前MOS管处于截止区;

t1→t2:随着Vgs继续增大,Id开始增大,Vds开始下降,此时MOS管工作在饱和区(如何判断是在饱和区?直接通过公式可知:Vds>Vgs-Vth,Vds-Id输出特性曲线反着分析一遍),Id主要由Vgs决定,这个过程中Vds会稍微有点降低,主要是△I导致G极端一些寄生感抗等形成压降;

t2→t3:Vgs增大到一定程度后,出现米勒效应,Id已经达到饱和,此时Vgs会持续一段时间不再增加,而Vds继续下降,给Cgd充电,也正是因为需要给Cgd充电,所以Cgs两端电压变化就比较小(MOS管开通时,Vd>Vg,Cdg先通过MOS管放电,而后再反向充电,夺取了给Cgs的充电电流,造成了Vgs的平台);

t3→t4:Vgs继续上升,此时进入可变电阻区,DS导通,Vds降来下来(米勒平台由于限制了Vgs的增加,也就限制了导通电阻的降低,进而限制了Vds的降低,使得MOS管不能很快进入开关状态)。

2.MOS管G极与S极之间的电阻作用

反激电源图:R3为GS电阻

用一个简单的实验证明GS间电阻的重要性:取一只mos管,让它的G极悬空,然后在DS上加电压,结果发现输入电压才三四十伏的时候,MOS管的DS就会直接导通,如果不限流则可能损坏。按说此时没有驱动,MOS管不应导通。但其实由于MOS管寄生电容的存在,当在DS之间加电压时,加在DS之间电压会通过Cdg给Cgs充电,这样G极的电压就会抬高直到mos管导通。(假如采用变压器驱动,变压器绕组可以起到放电作用,所以即使不加GS电阻,在驱动没有的情况下,管子也不会自己导通)

在GS之间并联一个电阻(阻值约为几K到几十K),可以有效保障MOS管正常工作。首先,门极悬空时DS之间电压不会导致MOS管导通损坏,同时在没有驱动时能将MOS管的门极钳在低位,不会误动作,能可靠通断。

### MOSFET 栅间 RC 特性电路分析 #### 影响因素重要性 为了确保MOSFET的正常工作,栅驱动应类似于一个低阻抗电压源[^1]。这意味着在设计栅驱动电路时,需特别关注其稳定性和响应速度等因素。 #### Rg 对上升时间和导通时间的影响 栅电阻 \( R_g \) 和栅源并联电容 \( C_{gs} \) 是影响MOSFET开关特性的两个重要因素。具体来说,\( R_g \) 的存在会影响信号传输的速度以及最终决定MOSFET能否快速进入饱和区或截止区。理论上,上升时间可以通过公式 \( t_r = 2 \times R_g \times C_{gs} \) 来估算[^2]。当MOSFET的最小导通时间被设定后,可以根据此关系确定合适的 \( R_g \) 值;通常情况下,较小的 \( R_g \) 更有利于减少开关损耗和发热问题。 #### 实际应用场景中的考量 对于实际应用而言,选择适当的 \( R_g \) 不仅要考虑上述提到的时间参数,还需要兼顾其他方面的要求,比如电磁兼容性(EMC)。过高的 \( R_g \) 可能会引起更严重的振荡现象,而过低则可能导致dV/dt过高引发误触发等问题。因此,在实践中往往需要通过实验测试找到最佳平衡点。 #### 示例代码模拟简单RC网络行为 下面给出一段Python代码用来展示如何使用SciPy库求解简单的RC充电方程: ```python import numpy as np from scipy.integrate import odeint import matplotlib.pyplot as plt def rc_circuit(V, t, R, C): dVdt = (Vin - V)/(R*C) return dVdt # 参数设置 R = 1e3 # Resistance in Ohms C = 10e-9 # Capacitance in Farads Vin = 5 # Input voltage level Volts time = np.linspace(0, 1e-4, 100) # 初始条件 initial_Voltage = 0 solution = odeint(rc_circuit, initial_Voltage, time, args=(R,C)) plt.plot(time*1e6,solution,'r',label='Capacitor Voltage') plt.title('Voltage across capacitor over Time') plt.xlabel('Time ($\mu$s)') plt.ylabel('Voltage (V)') plt.grid(True) plt.legend() plt.show() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值